Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Find the number one third of which exceeds its one fourth by 6.

A. 144

Sagot :

To find the number \( x \) such that one third of \( x \) exceeds one fourth of \( x \) by 6, follow these steps:

1. Set up the equation: Let \( x \) be the unknown number. According to the problem, one third of \( x \) exceeds one fourth of \( x \) by 6. This can be written as:

[tex]\[ \frac{1}{3}x - \frac{1}{4}x = 6 \][/tex]

2. Find a common denominator: To simplify the left-hand side of the equation, we need a common denominator for the fractions. The denominators are 3 and 4, and their least common multiple is 12. Rewrite the fractions with the common denominator:

[tex]\[ \frac{4}{12}x - \frac{3}{12}x = 6 \][/tex]

3. Combine the fractions: Now that the fractions have a common denominator, combine them:

[tex]\[ \frac{4x - 3x}{12} = 6 \][/tex]

Simplify the numerator:

[tex]\[ \frac{x}{12} = 6 \][/tex]

4. Solve for \( x \): To isolate \( x \), multiply both sides of the equation by 12:

[tex]\[ x = 6 \times 12 \][/tex]

Perform the multiplication:

[tex]\[ x = 72 \][/tex]

Thus, the number [tex]\( x \)[/tex] is 72.