Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine whether events \( A \) and \( B \) are independent, we need to check if the probability of \( A \) given \( B \) is equal to the probability of \( A \), and if the probability of \( B \) given \( A \) is equal to the probability of \( B \).
Step-by-Step Solution:
1. Given Information:
- \( P(A) = 0.45 \): The probability that Roger wins.
- \( P(B) = 0.40 \): The probability that Stephan wins.
- \( P(A \mid B) = 0.00 \): The probability that Roger wins given that Stephan wins.
- \( P(B \mid A) = 0.00 \): The probability that Stephan wins given that Roger wins.
2. Independence Criteria:
Events \( A \) and \( B \) are independent if:
[tex]\[ P(A \mid B) = P(A) \quad \text{and} \quad P(B \mid A) = P(B) \][/tex]
3. Check the Given Probabilities:
- \( P(A \mid B) = 0.00 \) and \( P(A) = 0.45 \):
Since \( P(A \mid B) \neq P(A) \), the first condition for independence is not met.
- \( P(B \mid A) = 0.00 \) and \( P(B) = 0.40 \):
Since \( P(B \mid A) \neq P(B) \), the second condition for independence is also not met.
4. Conclusion:
Since neither condition for independence is satisfied, events \( A \) and \( B \) are not independent.
Therefore, the correct statement is:
D. Events \( A \) and \( B \) are not independent because \( P(A \mid B) \neq P(A) \).
Hence, the answer is D.
Step-by-Step Solution:
1. Given Information:
- \( P(A) = 0.45 \): The probability that Roger wins.
- \( P(B) = 0.40 \): The probability that Stephan wins.
- \( P(A \mid B) = 0.00 \): The probability that Roger wins given that Stephan wins.
- \( P(B \mid A) = 0.00 \): The probability that Stephan wins given that Roger wins.
2. Independence Criteria:
Events \( A \) and \( B \) are independent if:
[tex]\[ P(A \mid B) = P(A) \quad \text{and} \quad P(B \mid A) = P(B) \][/tex]
3. Check the Given Probabilities:
- \( P(A \mid B) = 0.00 \) and \( P(A) = 0.45 \):
Since \( P(A \mid B) \neq P(A) \), the first condition for independence is not met.
- \( P(B \mid A) = 0.00 \) and \( P(B) = 0.40 \):
Since \( P(B \mid A) \neq P(B) \), the second condition for independence is also not met.
4. Conclusion:
Since neither condition for independence is satisfied, events \( A \) and \( B \) are not independent.
Therefore, the correct statement is:
D. Events \( A \) and \( B \) are not independent because \( P(A \mid B) \neq P(A) \).
Hence, the answer is D.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.