Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To identify the correct equilibrium constant expression for the given reaction:
[tex]\[ 2 H_2O(g) \leftrightharpoons 2 H_2(g) + O_2(g) \][/tex]
we need to use the general form of the equilibrium constant expression for a reversible reaction:
For a generic reaction of the form:
[tex]\[ aA + bB \leftrightharpoons cC + dD \][/tex]
the equilibrium constant expression (\( K_\text{eq} \)) is given by:
[tex]\[ K_\text{eq} = \frac{[C]^c [D]^d}{[A]^a [B]^b} \][/tex]
Here, \( [A] \), \( [B] \), \( [C] \), and \( [D] \) represent the molar concentrations of the reactants and products, and \( a \), \( b \), \( c \), and \( d \) are their respective stoichiometric coefficients.
Applying this to our given reaction:
[tex]\[ 2 H_2O(g) \leftrightharpoons 2 H_2(g) + O_2(g) \][/tex]
we can identify the following:
- \( [H_2O] \) with a coefficient of 2 on the reactant side
- \( [H_2] \) with a coefficient of 2 on the product side
- \( [O_2] \) with a coefficient of 1 on the product side
Thus, the equilibrium constant expression (\( K_\text{eq} \)) for this reaction is:
[tex]\[ K_\text{eq} = \frac{[H_2]^2 [O_2]}{[H_2O]^2} \][/tex]
Comparing this with the given multiple choices:
1. \( K_{\text {eop }}=\frac{\left[ H _2 O \right]}{\left[ H _2\right]\left[ O _2\right]} \)
2. \( K_{S O}=\frac{\left[ H _2 O \right]^2}{\left[ H _2\right]^2\left[ O _2\right]} \)
3. \( K_{\infty 0}=\frac{\left[ H _2\right]^2\left[ O _2\right]}{\left[ H _2 O \right]} \)
4. \( K_{e Q}=\frac{\left[ H _2\right]^2\left[ O _2\right]}{\left[ H _2 O \right]^2} \)
The correct equilibrium constant expression is:
[tex]\[ K_{e Q}=\frac{\left[ H _2\right]^2\left[ O _2\right]}{\left[ H _2 O \right]^2} \][/tex]
Therefore, the correct choice is [tex]\( K_{e Q} \)[/tex].
[tex]\[ 2 H_2O(g) \leftrightharpoons 2 H_2(g) + O_2(g) \][/tex]
we need to use the general form of the equilibrium constant expression for a reversible reaction:
For a generic reaction of the form:
[tex]\[ aA + bB \leftrightharpoons cC + dD \][/tex]
the equilibrium constant expression (\( K_\text{eq} \)) is given by:
[tex]\[ K_\text{eq} = \frac{[C]^c [D]^d}{[A]^a [B]^b} \][/tex]
Here, \( [A] \), \( [B] \), \( [C] \), and \( [D] \) represent the molar concentrations of the reactants and products, and \( a \), \( b \), \( c \), and \( d \) are their respective stoichiometric coefficients.
Applying this to our given reaction:
[tex]\[ 2 H_2O(g) \leftrightharpoons 2 H_2(g) + O_2(g) \][/tex]
we can identify the following:
- \( [H_2O] \) with a coefficient of 2 on the reactant side
- \( [H_2] \) with a coefficient of 2 on the product side
- \( [O_2] \) with a coefficient of 1 on the product side
Thus, the equilibrium constant expression (\( K_\text{eq} \)) for this reaction is:
[tex]\[ K_\text{eq} = \frac{[H_2]^2 [O_2]}{[H_2O]^2} \][/tex]
Comparing this with the given multiple choices:
1. \( K_{\text {eop }}=\frac{\left[ H _2 O \right]}{\left[ H _2\right]\left[ O _2\right]} \)
2. \( K_{S O}=\frac{\left[ H _2 O \right]^2}{\left[ H _2\right]^2\left[ O _2\right]} \)
3. \( K_{\infty 0}=\frac{\left[ H _2\right]^2\left[ O _2\right]}{\left[ H _2 O \right]} \)
4. \( K_{e Q}=\frac{\left[ H _2\right]^2\left[ O _2\right]}{\left[ H _2 O \right]^2} \)
The correct equilibrium constant expression is:
[tex]\[ K_{e Q}=\frac{\left[ H _2\right]^2\left[ O _2\right]}{\left[ H _2 O \right]^2} \][/tex]
Therefore, the correct choice is [tex]\( K_{e Q} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.