Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which equation represents the line that passes through the point \(\left(4, \frac{1}{3}\right)\) and has a slope of \(\frac{3}{4}\), we can use the point-slope form of the line equation. The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \((x_1, y_1)\) is a point on the line and \(m\) is the slope.
Here, \((x_1, y_1) = \left(4, \frac{1}{3}\right)\) and \(m = \frac{3}{4}\).
Substituting these values into the point-slope form equation, we get:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Looking through the options given:
1. \( y - \frac{3}{4} = \frac{1}{3}(x - 4) \)
2. \( y - \frac{1}{3} = \frac{3}{4}(x - 4) \)
3. \( y - \frac{1}{3} = 4\left(x - \frac{3}{4}\right) \)
4. \( y - 4 = \frac{3}{4}\left(x - \frac{1}{3}\right) \)
Clearly, option 2 matches our derived equation exactly:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Thus:
The equation that represents a line that passes through \(\left(4, \frac{1}{3}\right)\) and has a slope of \(\frac{3}{4}\) is:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Therefore, the correct option is:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
which corresponds to option 2.
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \((x_1, y_1)\) is a point on the line and \(m\) is the slope.
Here, \((x_1, y_1) = \left(4, \frac{1}{3}\right)\) and \(m = \frac{3}{4}\).
Substituting these values into the point-slope form equation, we get:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Looking through the options given:
1. \( y - \frac{3}{4} = \frac{1}{3}(x - 4) \)
2. \( y - \frac{1}{3} = \frac{3}{4}(x - 4) \)
3. \( y - \frac{1}{3} = 4\left(x - \frac{3}{4}\right) \)
4. \( y - 4 = \frac{3}{4}\left(x - \frac{1}{3}\right) \)
Clearly, option 2 matches our derived equation exactly:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Thus:
The equation that represents a line that passes through \(\left(4, \frac{1}{3}\right)\) and has a slope of \(\frac{3}{4}\) is:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
Therefore, the correct option is:
[tex]\[ y - \frac{1}{3} = \frac{3}{4}(x - 4) \][/tex]
which corresponds to option 2.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.