Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To identify the slope and the coordinates of a point on the line given by the point-slope form equation \( y - 4 = \frac{1}{2}(x - 1) \), we can proceed as follows:
1. Identify the Slope:
The point-slope form of a linear equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \(m\) is the slope and \((x_1, y_1)\) is a point on the line.
Comparing the given equation \( y - 4 = \frac{1}{2}(x - 1) \) with the point-slope form:
[tex]\[ y - 4 = \frac{1}{2}(x - 1) \][/tex]
we can see that the slope \(m\) is \(\frac{1}{2}\).
Therefore, the slope of the line is \(\boxed{0.5}\).
2. Identify a Point on the Line:
From the point-slope form, the coordinates \( (x_1, y_1) \) are taken directly from the equation. Here, we have:
[tex]\[ y - 4 = \frac{1}{2}(x - 1) \][/tex]
By comparing this with the generic formula:
[tex]\[ y - y_1 = m(x - x_1), \][/tex]
we can identify that:
[tex]\[ y_1 = 4 \][/tex]
[tex]\[ x_1 = 1 \][/tex]
Thus, a point on the line is \((1, 4)\).
Therefore, a point on the line is \(\boxed{(1, 4)}\).
In summary:
- The slope of the line is \(\boxed{0.5}\).
- A point on the line is [tex]\(\boxed{(1, 4)}\)[/tex].
1. Identify the Slope:
The point-slope form of a linear equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \(m\) is the slope and \((x_1, y_1)\) is a point on the line.
Comparing the given equation \( y - 4 = \frac{1}{2}(x - 1) \) with the point-slope form:
[tex]\[ y - 4 = \frac{1}{2}(x - 1) \][/tex]
we can see that the slope \(m\) is \(\frac{1}{2}\).
Therefore, the slope of the line is \(\boxed{0.5}\).
2. Identify a Point on the Line:
From the point-slope form, the coordinates \( (x_1, y_1) \) are taken directly from the equation. Here, we have:
[tex]\[ y - 4 = \frac{1}{2}(x - 1) \][/tex]
By comparing this with the generic formula:
[tex]\[ y - y_1 = m(x - x_1), \][/tex]
we can identify that:
[tex]\[ y_1 = 4 \][/tex]
[tex]\[ x_1 = 1 \][/tex]
Thus, a point on the line is \((1, 4)\).
Therefore, a point on the line is \(\boxed{(1, 4)}\).
In summary:
- The slope of the line is \(\boxed{0.5}\).
- A point on the line is [tex]\(\boxed{(1, 4)}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.