Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the center of the circle given by the equation \(x^2 + y^2 + 6x + 4y - 3 = 0\), we need to complete the square for both the \(x\) and \(y\) terms. Here is the step-by-step solution:
1. Rearrange the equation to group \(x\) and \(y\) terms:
[tex]\[ x^2 + 6x + y^2 + 4y - 3 = 0 \][/tex]
[tex]\[ x^2 + 6x + y^2 + 4y = 3 \][/tex]
2. Complete the square for the \(x\)-terms:
- Take the coefficient of \(x\) (which is 6), divide by 2, and square it:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
- Add and subtract this value inside the equation:
[tex]\[ x^2 + 6x + 9 - 9 \][/tex]
- This can be written as a perfect square:
[tex]\[ (x + 3)^2 - 9 \][/tex]
3. Complete the square for the \(y\)-terms:
- Take the coefficient of \(y\) (which is 4), divide by 2, and square it:
[tex]\[ \left(\frac{4}{2}\right)^2 = 2^2 = 4 \][/tex]
- Add and subtract this value inside the equation:
[tex]\[ y^2 + 4y + 4 - 4 \][/tex]
- This can be written as a perfect square:
[tex]\[ (y + 2)^2 - 4 \][/tex]
4. Rewrite the equation including the completed squares:
[tex]\[ (x + 3)^2 - 9 + (y + 2)^2 - 4 = 3 \][/tex]
5. Simplify the equation:
[tex]\[ (x + 3)^2 + (y + 2)^2 - 13 = 3 \][/tex]
[tex]\[ (x + 3)^2 + (y + 2)^2 = 16 \][/tex]
6. Recognize the equation in standard form of a circle:
[tex]\[ (x + 3)^2 + (y + 2)^2 = 4^2 \][/tex]
From this standard form, we can identify the center and radius of the circle. The center is given by \((h, k)\) where \((x - h)\) and \((y - k)\) translate to the circle's center coordinates.
Thus, the center of the circle is \((-3, -2)\).
The correct completion of the work is:
[tex]\[ (x + 3)^2 + (y + 2)^2 = 4^2 \text{, so the center is } (-3, -2). \][/tex]
Therefore, the correct choice is:
[tex]\((x + 3)^2 + (y + 2)^2 = 4^2 \text{, so the center is } (-3, -2).\)[/tex]
1. Rearrange the equation to group \(x\) and \(y\) terms:
[tex]\[ x^2 + 6x + y^2 + 4y - 3 = 0 \][/tex]
[tex]\[ x^2 + 6x + y^2 + 4y = 3 \][/tex]
2. Complete the square for the \(x\)-terms:
- Take the coefficient of \(x\) (which is 6), divide by 2, and square it:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
- Add and subtract this value inside the equation:
[tex]\[ x^2 + 6x + 9 - 9 \][/tex]
- This can be written as a perfect square:
[tex]\[ (x + 3)^2 - 9 \][/tex]
3. Complete the square for the \(y\)-terms:
- Take the coefficient of \(y\) (which is 4), divide by 2, and square it:
[tex]\[ \left(\frac{4}{2}\right)^2 = 2^2 = 4 \][/tex]
- Add and subtract this value inside the equation:
[tex]\[ y^2 + 4y + 4 - 4 \][/tex]
- This can be written as a perfect square:
[tex]\[ (y + 2)^2 - 4 \][/tex]
4. Rewrite the equation including the completed squares:
[tex]\[ (x + 3)^2 - 9 + (y + 2)^2 - 4 = 3 \][/tex]
5. Simplify the equation:
[tex]\[ (x + 3)^2 + (y + 2)^2 - 13 = 3 \][/tex]
[tex]\[ (x + 3)^2 + (y + 2)^2 = 16 \][/tex]
6. Recognize the equation in standard form of a circle:
[tex]\[ (x + 3)^2 + (y + 2)^2 = 4^2 \][/tex]
From this standard form, we can identify the center and radius of the circle. The center is given by \((h, k)\) where \((x - h)\) and \((y - k)\) translate to the circle's center coordinates.
Thus, the center of the circle is \((-3, -2)\).
The correct completion of the work is:
[tex]\[ (x + 3)^2 + (y + 2)^2 = 4^2 \text{, so the center is } (-3, -2). \][/tex]
Therefore, the correct choice is:
[tex]\((x + 3)^2 + (y + 2)^2 = 4^2 \text{, so the center is } (-3, -2).\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.