Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the center of the circle given by the equation \(x^2 + y^2 + 6x + 4y - 3 = 0\), we need to complete the square for both the \(x\) and \(y\) terms. Here is the step-by-step solution:
1. Rearrange the equation to group \(x\) and \(y\) terms:
[tex]\[ x^2 + 6x + y^2 + 4y - 3 = 0 \][/tex]
[tex]\[ x^2 + 6x + y^2 + 4y = 3 \][/tex]
2. Complete the square for the \(x\)-terms:
- Take the coefficient of \(x\) (which is 6), divide by 2, and square it:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
- Add and subtract this value inside the equation:
[tex]\[ x^2 + 6x + 9 - 9 \][/tex]
- This can be written as a perfect square:
[tex]\[ (x + 3)^2 - 9 \][/tex]
3. Complete the square for the \(y\)-terms:
- Take the coefficient of \(y\) (which is 4), divide by 2, and square it:
[tex]\[ \left(\frac{4}{2}\right)^2 = 2^2 = 4 \][/tex]
- Add and subtract this value inside the equation:
[tex]\[ y^2 + 4y + 4 - 4 \][/tex]
- This can be written as a perfect square:
[tex]\[ (y + 2)^2 - 4 \][/tex]
4. Rewrite the equation including the completed squares:
[tex]\[ (x + 3)^2 - 9 + (y + 2)^2 - 4 = 3 \][/tex]
5. Simplify the equation:
[tex]\[ (x + 3)^2 + (y + 2)^2 - 13 = 3 \][/tex]
[tex]\[ (x + 3)^2 + (y + 2)^2 = 16 \][/tex]
6. Recognize the equation in standard form of a circle:
[tex]\[ (x + 3)^2 + (y + 2)^2 = 4^2 \][/tex]
From this standard form, we can identify the center and radius of the circle. The center is given by \((h, k)\) where \((x - h)\) and \((y - k)\) translate to the circle's center coordinates.
Thus, the center of the circle is \((-3, -2)\).
The correct completion of the work is:
[tex]\[ (x + 3)^2 + (y + 2)^2 = 4^2 \text{, so the center is } (-3, -2). \][/tex]
Therefore, the correct choice is:
[tex]\((x + 3)^2 + (y + 2)^2 = 4^2 \text{, so the center is } (-3, -2).\)[/tex]
1. Rearrange the equation to group \(x\) and \(y\) terms:
[tex]\[ x^2 + 6x + y^2 + 4y - 3 = 0 \][/tex]
[tex]\[ x^2 + 6x + y^2 + 4y = 3 \][/tex]
2. Complete the square for the \(x\)-terms:
- Take the coefficient of \(x\) (which is 6), divide by 2, and square it:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
- Add and subtract this value inside the equation:
[tex]\[ x^2 + 6x + 9 - 9 \][/tex]
- This can be written as a perfect square:
[tex]\[ (x + 3)^2 - 9 \][/tex]
3. Complete the square for the \(y\)-terms:
- Take the coefficient of \(y\) (which is 4), divide by 2, and square it:
[tex]\[ \left(\frac{4}{2}\right)^2 = 2^2 = 4 \][/tex]
- Add and subtract this value inside the equation:
[tex]\[ y^2 + 4y + 4 - 4 \][/tex]
- This can be written as a perfect square:
[tex]\[ (y + 2)^2 - 4 \][/tex]
4. Rewrite the equation including the completed squares:
[tex]\[ (x + 3)^2 - 9 + (y + 2)^2 - 4 = 3 \][/tex]
5. Simplify the equation:
[tex]\[ (x + 3)^2 + (y + 2)^2 - 13 = 3 \][/tex]
[tex]\[ (x + 3)^2 + (y + 2)^2 = 16 \][/tex]
6. Recognize the equation in standard form of a circle:
[tex]\[ (x + 3)^2 + (y + 2)^2 = 4^2 \][/tex]
From this standard form, we can identify the center and radius of the circle. The center is given by \((h, k)\) where \((x - h)\) and \((y - k)\) translate to the circle's center coordinates.
Thus, the center of the circle is \((-3, -2)\).
The correct completion of the work is:
[tex]\[ (x + 3)^2 + (y + 2)^2 = 4^2 \text{, so the center is } (-3, -2). \][/tex]
Therefore, the correct choice is:
[tex]\((x + 3)^2 + (y + 2)^2 = 4^2 \text{, so the center is } (-3, -2).\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.