Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

For the function defined as follows, find all values of [tex]$x[tex]$[/tex] and [tex]$[/tex]y[tex]$[/tex] such that both [tex]$[/tex]f_x(x, y)=0[tex]$[/tex] and [tex]$[/tex]f_y(x, y)=0$[/tex].

[tex] f(x, y)=7x^2+9y^2+2xy+32x-6 [/tex]


Sagot :

To find the values of \( x \) and \( y \) that satisfy \( f_x(x, y) = 0 \) and \( f_y(x, y) = 0 \) for the function \( f(x, y) = 7x^2 + 9y^2 + 2xy + 32x - 6 \), we will follow a detailed, step-by-step method:

### Step 1: Calculate the partial derivatives
First, we compute the partial derivatives of \( f \) with respect to \( x \) and \( y \).

For the partial derivative with respect to \( x \):
[tex]\[ f_x(x, y) = \frac{\partial}{\partial x} (7x^2 + 9y^2 + 2xy + 32x - 6) \][/tex]
Applying the rules of differentiation:
[tex]\[ f_x(x, y) = 14x + 2y + 32 \][/tex]

For the partial derivative with respect to \( y \):
[tex]\[ f_y(x, y) = \frac{\partial}{\partial y} (7x^2 + 9y^2 + 2xy + 32x - 6) \][/tex]
Applying the rules of differentiation:
[tex]\[ f_y(x, y) = 2x + 18y \][/tex]

### Step 2: Set the partial derivatives equal to zero
We need to find the values of \( x \) and \( y \) such that both partial derivatives are zero:
[tex]\[ f_x(x, y) = 14x + 2y + 32 = 0 \][/tex]
[tex]\[ f_y(x, y) = 2x + 18y = 0 \][/tex]

### Step 3: Solve the system of equations
We solve the system of linear equations:
1. \( 14x + 2y + 32 = 0 \)
2. \( 2x + 18y = 0 \)

First, we simplify the second equation:
[tex]\[ 2x + 18y = 0 \implies x = -9y \][/tex]

Next, we substitute \( x = -9y \) into the first equation:
[tex]\[ 14(-9y) + 2y + 32 = 0 \][/tex]
[tex]\[ -126y + 2y + 32 = 0 \][/tex]
[tex]\[ -124y + 32 = 0 \][/tex]
[tex]\[ -124y = -32 \][/tex]
[tex]\[ y = \frac{32}{124} = \frac{8}{31} \][/tex]

With \( y = \frac{8}{31} \), we substitute back to find \( x \):
[tex]\[ x = -9y = -9 \left(\frac{8}{31}\right) = -\frac{72}{31} \][/tex]

### Step 4: Present the solution
Therefore, the values of \( x \) and \( y \) that satisfy both \( f_x(x, y) = 0 \) and \( f_y(x, y) = 0 \) are:
[tex]\[ x = -\frac{72}{31} \quad \text{and} \quad y = \frac{8}{31} \][/tex]

The critical point of the function [tex]\( f(x, y) \)[/tex] is [tex]\(\left(-\frac{72}{31}, \frac{8}{31}\right)\)[/tex].