Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the values of \( x \) and \( y \) that satisfy \( f_x(x, y) = 0 \) and \( f_y(x, y) = 0 \) for the function \( f(x, y) = 7x^2 + 9y^2 + 2xy + 32x - 6 \), we will follow a detailed, step-by-step method:
### Step 1: Calculate the partial derivatives
First, we compute the partial derivatives of \( f \) with respect to \( x \) and \( y \).
For the partial derivative with respect to \( x \):
[tex]\[ f_x(x, y) = \frac{\partial}{\partial x} (7x^2 + 9y^2 + 2xy + 32x - 6) \][/tex]
Applying the rules of differentiation:
[tex]\[ f_x(x, y) = 14x + 2y + 32 \][/tex]
For the partial derivative with respect to \( y \):
[tex]\[ f_y(x, y) = \frac{\partial}{\partial y} (7x^2 + 9y^2 + 2xy + 32x - 6) \][/tex]
Applying the rules of differentiation:
[tex]\[ f_y(x, y) = 2x + 18y \][/tex]
### Step 2: Set the partial derivatives equal to zero
We need to find the values of \( x \) and \( y \) such that both partial derivatives are zero:
[tex]\[ f_x(x, y) = 14x + 2y + 32 = 0 \][/tex]
[tex]\[ f_y(x, y) = 2x + 18y = 0 \][/tex]
### Step 3: Solve the system of equations
We solve the system of linear equations:
1. \( 14x + 2y + 32 = 0 \)
2. \( 2x + 18y = 0 \)
First, we simplify the second equation:
[tex]\[ 2x + 18y = 0 \implies x = -9y \][/tex]
Next, we substitute \( x = -9y \) into the first equation:
[tex]\[ 14(-9y) + 2y + 32 = 0 \][/tex]
[tex]\[ -126y + 2y + 32 = 0 \][/tex]
[tex]\[ -124y + 32 = 0 \][/tex]
[tex]\[ -124y = -32 \][/tex]
[tex]\[ y = \frac{32}{124} = \frac{8}{31} \][/tex]
With \( y = \frac{8}{31} \), we substitute back to find \( x \):
[tex]\[ x = -9y = -9 \left(\frac{8}{31}\right) = -\frac{72}{31} \][/tex]
### Step 4: Present the solution
Therefore, the values of \( x \) and \( y \) that satisfy both \( f_x(x, y) = 0 \) and \( f_y(x, y) = 0 \) are:
[tex]\[ x = -\frac{72}{31} \quad \text{and} \quad y = \frac{8}{31} \][/tex]
The critical point of the function [tex]\( f(x, y) \)[/tex] is [tex]\(\left(-\frac{72}{31}, \frac{8}{31}\right)\)[/tex].
### Step 1: Calculate the partial derivatives
First, we compute the partial derivatives of \( f \) with respect to \( x \) and \( y \).
For the partial derivative with respect to \( x \):
[tex]\[ f_x(x, y) = \frac{\partial}{\partial x} (7x^2 + 9y^2 + 2xy + 32x - 6) \][/tex]
Applying the rules of differentiation:
[tex]\[ f_x(x, y) = 14x + 2y + 32 \][/tex]
For the partial derivative with respect to \( y \):
[tex]\[ f_y(x, y) = \frac{\partial}{\partial y} (7x^2 + 9y^2 + 2xy + 32x - 6) \][/tex]
Applying the rules of differentiation:
[tex]\[ f_y(x, y) = 2x + 18y \][/tex]
### Step 2: Set the partial derivatives equal to zero
We need to find the values of \( x \) and \( y \) such that both partial derivatives are zero:
[tex]\[ f_x(x, y) = 14x + 2y + 32 = 0 \][/tex]
[tex]\[ f_y(x, y) = 2x + 18y = 0 \][/tex]
### Step 3: Solve the system of equations
We solve the system of linear equations:
1. \( 14x + 2y + 32 = 0 \)
2. \( 2x + 18y = 0 \)
First, we simplify the second equation:
[tex]\[ 2x + 18y = 0 \implies x = -9y \][/tex]
Next, we substitute \( x = -9y \) into the first equation:
[tex]\[ 14(-9y) + 2y + 32 = 0 \][/tex]
[tex]\[ -126y + 2y + 32 = 0 \][/tex]
[tex]\[ -124y + 32 = 0 \][/tex]
[tex]\[ -124y = -32 \][/tex]
[tex]\[ y = \frac{32}{124} = \frac{8}{31} \][/tex]
With \( y = \frac{8}{31} \), we substitute back to find \( x \):
[tex]\[ x = -9y = -9 \left(\frac{8}{31}\right) = -\frac{72}{31} \][/tex]
### Step 4: Present the solution
Therefore, the values of \( x \) and \( y \) that satisfy both \( f_x(x, y) = 0 \) and \( f_y(x, y) = 0 \) are:
[tex]\[ x = -\frac{72}{31} \quad \text{and} \quad y = \frac{8}{31} \][/tex]
The critical point of the function [tex]\( f(x, y) \)[/tex] is [tex]\(\left(-\frac{72}{31}, \frac{8}{31}\right)\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.