Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the critical points of the function \( f(x, y) = 7 x^2 + 9 y^2 + 2 x y + 32 x - 6 \), we need to solve for \( x \) and \( y \) such that both partial derivatives \( f_x(x, y) = 0 \) and \( f_y(x, y) = 0 \).
First, we find the partial derivatives of the function \( f(x, y) \):
1. Compute the partial derivative with respect to \( x \):
[tex]\[ f_x(x, y) = \frac{\partial}{\partial x} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_x(x, y) = 14 x + 2 y + 32 \][/tex]
2. Compute the partial derivative with respect to \( y \):
[tex]\[ f_y(x, y) = \frac{\partial}{\partial y} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_y(x, y) = 18 y + 2 x \][/tex]
Next, we set the partial derivatives to zero to find the critical points:
[tex]\[ 14 x + 2 y + 32 = 0 \][/tex]
[tex]\[ 18 y + 2 x = 0 \][/tex]
We now solve this system of linear equations. First, solve the second equation for \( x \):
[tex]\[ 2 x + 18 y = 0 \implies x = -9 y \][/tex]
Substitute \( x = -9 y \) into the first equation:
[tex]\[ 14 (-9 y) + 2 y + 32 = 0 \][/tex]
[tex]\[ -126 y + 2 y + 32 = 0 \][/tex]
[tex]\[ -124 y + 32 = 0 \][/tex]
[tex]\[ -124 y = -32 \][/tex]
[tex]\[ y = \frac{32}{124} = \frac{8}{31} \][/tex]
Substitute \( y = \frac{8}{31} \) back into \( x = -9 y \):
[tex]\[ x = -9 \left(\frac{8}{31}\right) = -\frac{72}{31} \][/tex]
Therefore, the solution is:
[tex]\[ x = -\frac{72}{31}, \quad y = \frac{8}{31} \][/tex]
Thus, the correct choice is:
[tex]$\square$[/tex] A. There is only one solution where [tex]\( f_x(x, y) = 0 \)[/tex] and [tex]\( f_y(x, y) = 0 \)[/tex], when [tex]\( x = -\frac{72}{31} \)[/tex] and [tex]\( y = \frac{8}{31} \)[/tex].
First, we find the partial derivatives of the function \( f(x, y) \):
1. Compute the partial derivative with respect to \( x \):
[tex]\[ f_x(x, y) = \frac{\partial}{\partial x} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_x(x, y) = 14 x + 2 y + 32 \][/tex]
2. Compute the partial derivative with respect to \( y \):
[tex]\[ f_y(x, y) = \frac{\partial}{\partial y} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_y(x, y) = 18 y + 2 x \][/tex]
Next, we set the partial derivatives to zero to find the critical points:
[tex]\[ 14 x + 2 y + 32 = 0 \][/tex]
[tex]\[ 18 y + 2 x = 0 \][/tex]
We now solve this system of linear equations. First, solve the second equation for \( x \):
[tex]\[ 2 x + 18 y = 0 \implies x = -9 y \][/tex]
Substitute \( x = -9 y \) into the first equation:
[tex]\[ 14 (-9 y) + 2 y + 32 = 0 \][/tex]
[tex]\[ -126 y + 2 y + 32 = 0 \][/tex]
[tex]\[ -124 y + 32 = 0 \][/tex]
[tex]\[ -124 y = -32 \][/tex]
[tex]\[ y = \frac{32}{124} = \frac{8}{31} \][/tex]
Substitute \( y = \frac{8}{31} \) back into \( x = -9 y \):
[tex]\[ x = -9 \left(\frac{8}{31}\right) = -\frac{72}{31} \][/tex]
Therefore, the solution is:
[tex]\[ x = -\frac{72}{31}, \quad y = \frac{8}{31} \][/tex]
Thus, the correct choice is:
[tex]$\square$[/tex] A. There is only one solution where [tex]\( f_x(x, y) = 0 \)[/tex] and [tex]\( f_y(x, y) = 0 \)[/tex], when [tex]\( x = -\frac{72}{31} \)[/tex] and [tex]\( y = \frac{8}{31} \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.