Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the critical points of the function \( f(x, y) = 7 x^2 + 9 y^2 + 2 x y + 32 x - 6 \), we need to solve for \( x \) and \( y \) such that both partial derivatives \( f_x(x, y) = 0 \) and \( f_y(x, y) = 0 \).
First, we find the partial derivatives of the function \( f(x, y) \):
1. Compute the partial derivative with respect to \( x \):
[tex]\[ f_x(x, y) = \frac{\partial}{\partial x} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_x(x, y) = 14 x + 2 y + 32 \][/tex]
2. Compute the partial derivative with respect to \( y \):
[tex]\[ f_y(x, y) = \frac{\partial}{\partial y} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_y(x, y) = 18 y + 2 x \][/tex]
Next, we set the partial derivatives to zero to find the critical points:
[tex]\[ 14 x + 2 y + 32 = 0 \][/tex]
[tex]\[ 18 y + 2 x = 0 \][/tex]
We now solve this system of linear equations. First, solve the second equation for \( x \):
[tex]\[ 2 x + 18 y = 0 \implies x = -9 y \][/tex]
Substitute \( x = -9 y \) into the first equation:
[tex]\[ 14 (-9 y) + 2 y + 32 = 0 \][/tex]
[tex]\[ -126 y + 2 y + 32 = 0 \][/tex]
[tex]\[ -124 y + 32 = 0 \][/tex]
[tex]\[ -124 y = -32 \][/tex]
[tex]\[ y = \frac{32}{124} = \frac{8}{31} \][/tex]
Substitute \( y = \frac{8}{31} \) back into \( x = -9 y \):
[tex]\[ x = -9 \left(\frac{8}{31}\right) = -\frac{72}{31} \][/tex]
Therefore, the solution is:
[tex]\[ x = -\frac{72}{31}, \quad y = \frac{8}{31} \][/tex]
Thus, the correct choice is:
[tex]$\square$[/tex] A. There is only one solution where [tex]\( f_x(x, y) = 0 \)[/tex] and [tex]\( f_y(x, y) = 0 \)[/tex], when [tex]\( x = -\frac{72}{31} \)[/tex] and [tex]\( y = \frac{8}{31} \)[/tex].
First, we find the partial derivatives of the function \( f(x, y) \):
1. Compute the partial derivative with respect to \( x \):
[tex]\[ f_x(x, y) = \frac{\partial}{\partial x} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_x(x, y) = 14 x + 2 y + 32 \][/tex]
2. Compute the partial derivative with respect to \( y \):
[tex]\[ f_y(x, y) = \frac{\partial}{\partial y} (7 x^2 + 9 y^2 + 2 x y + 32 x - 6) \][/tex]
[tex]\[ f_y(x, y) = 18 y + 2 x \][/tex]
Next, we set the partial derivatives to zero to find the critical points:
[tex]\[ 14 x + 2 y + 32 = 0 \][/tex]
[tex]\[ 18 y + 2 x = 0 \][/tex]
We now solve this system of linear equations. First, solve the second equation for \( x \):
[tex]\[ 2 x + 18 y = 0 \implies x = -9 y \][/tex]
Substitute \( x = -9 y \) into the first equation:
[tex]\[ 14 (-9 y) + 2 y + 32 = 0 \][/tex]
[tex]\[ -126 y + 2 y + 32 = 0 \][/tex]
[tex]\[ -124 y + 32 = 0 \][/tex]
[tex]\[ -124 y = -32 \][/tex]
[tex]\[ y = \frac{32}{124} = \frac{8}{31} \][/tex]
Substitute \( y = \frac{8}{31} \) back into \( x = -9 y \):
[tex]\[ x = -9 \left(\frac{8}{31}\right) = -\frac{72}{31} \][/tex]
Therefore, the solution is:
[tex]\[ x = -\frac{72}{31}, \quad y = \frac{8}{31} \][/tex]
Thus, the correct choice is:
[tex]$\square$[/tex] A. There is only one solution where [tex]\( f_x(x, y) = 0 \)[/tex] and [tex]\( f_y(x, y) = 0 \)[/tex], when [tex]\( x = -\frac{72}{31} \)[/tex] and [tex]\( y = \frac{8}{31} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.