Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's determine the locations of any relative extrema and identify any saddle points for the given function:
[tex]\[ f(x, y) = -3x^2 - 5xy - 3y^2 - 15x - 18y + 5 \][/tex]
### Step 1: Find the first partial derivatives
First, we need to calculate the partial derivatives of \( f \) with respect to \( x \) and \( y \):
[tex]\[ f_x = \frac{\partial f}{\partial x} \][/tex]
[tex]\[ f_x = -6x - 5y - 15 \][/tex]
[tex]\[ f_y = \frac{\partial f}{\partial y} \][/tex]
[tex]\[ f_y = -5x - 6y - 18 \][/tex]
### Step 2: Find critical points
To find the critical points, we set the first partial derivatives equal to zero and solve the resulting system of equations:
[tex]\[ -6x - 5y - 15 = 0 \][/tex]
[tex]\[ -5x - 6y - 18 = 0 \][/tex]
Solving this system of linear equations, we can use substitution or elimination method:
Multiply the first equation by 6 and the second by 5 to facilitate elimination of \( y \):
[tex]\[ -36x - 30y - 90 = 0 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -25x - 30y - 90 = 0 \quad \text{(Equation 2)} \][/tex]
Now subtract Equation 2 from Equation 1:
[tex]\[ (-36x - 30y - 90) - (-25x - 30y - 90) = 0 \][/tex]
[tex]\[ -36x + 25x = 0 \][/tex]
[tex]\[ -11x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
Substitute \( x = 0 \) back into one of the original equations, say \( -6x - 5y - 15 = 0 \):
[tex]\[ -6(0) - 5y - 15 = 0 \][/tex]
[tex]\[ -5y - 15 = 0 \][/tex]
[tex]\[ -5y = 15 \][/tex]
[tex]\[ y = -3 \][/tex]
So, the critical point is:
[tex]\[ (x, y) = (0, -3) \][/tex]
### Step 3: Find the second partial derivatives
Now, we need to find the second partial derivatives to determine the nature of the critical point:
[tex]\[ f_{xx} = \frac{\partial^2 f}{\partial x^2} \][/tex]
[tex]\[ f_{xx} = -6 \][/tex]
[tex]\[ f_{yy} = \frac{\partial^2 f}{\partial y^2} \][/tex]
[tex]\[ f_{yy} = -6 \][/tex]
[tex]\[ f_{xy} = \frac{\partial^2 f}{\partial x \partial y} \][/tex]
[tex]\[ f_{xy} = -5 \][/tex]
### Step 4: Evaluate the Hessian determinant
The Hessian determinant \( D \) at the critical point \((0, -3)\) is given by:
[tex]\[ D = f_{xx}f_{yy} - (f_{xy})^2 \][/tex]
[tex]\[ D = (-6)(-6) - (-5)^2 \][/tex]
[tex]\[ D = 36 - 25 \][/tex]
[tex]\[ D = 11 \][/tex]
### Step 5: Classify the critical point
Since \( D > 0 \) and \( f_{xx} < 0 \):
- The critical point \((0, -3)\) is a relative maximum.
Therefore, the correct answer is:
B. There are no relative maxima.
[tex]\[ f(x, y) = -3x^2 - 5xy - 3y^2 - 15x - 18y + 5 \][/tex]
### Step 1: Find the first partial derivatives
First, we need to calculate the partial derivatives of \( f \) with respect to \( x \) and \( y \):
[tex]\[ f_x = \frac{\partial f}{\partial x} \][/tex]
[tex]\[ f_x = -6x - 5y - 15 \][/tex]
[tex]\[ f_y = \frac{\partial f}{\partial y} \][/tex]
[tex]\[ f_y = -5x - 6y - 18 \][/tex]
### Step 2: Find critical points
To find the critical points, we set the first partial derivatives equal to zero and solve the resulting system of equations:
[tex]\[ -6x - 5y - 15 = 0 \][/tex]
[tex]\[ -5x - 6y - 18 = 0 \][/tex]
Solving this system of linear equations, we can use substitution or elimination method:
Multiply the first equation by 6 and the second by 5 to facilitate elimination of \( y \):
[tex]\[ -36x - 30y - 90 = 0 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -25x - 30y - 90 = 0 \quad \text{(Equation 2)} \][/tex]
Now subtract Equation 2 from Equation 1:
[tex]\[ (-36x - 30y - 90) - (-25x - 30y - 90) = 0 \][/tex]
[tex]\[ -36x + 25x = 0 \][/tex]
[tex]\[ -11x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
Substitute \( x = 0 \) back into one of the original equations, say \( -6x - 5y - 15 = 0 \):
[tex]\[ -6(0) - 5y - 15 = 0 \][/tex]
[tex]\[ -5y - 15 = 0 \][/tex]
[tex]\[ -5y = 15 \][/tex]
[tex]\[ y = -3 \][/tex]
So, the critical point is:
[tex]\[ (x, y) = (0, -3) \][/tex]
### Step 3: Find the second partial derivatives
Now, we need to find the second partial derivatives to determine the nature of the critical point:
[tex]\[ f_{xx} = \frac{\partial^2 f}{\partial x^2} \][/tex]
[tex]\[ f_{xx} = -6 \][/tex]
[tex]\[ f_{yy} = \frac{\partial^2 f}{\partial y^2} \][/tex]
[tex]\[ f_{yy} = -6 \][/tex]
[tex]\[ f_{xy} = \frac{\partial^2 f}{\partial x \partial y} \][/tex]
[tex]\[ f_{xy} = -5 \][/tex]
### Step 4: Evaluate the Hessian determinant
The Hessian determinant \( D \) at the critical point \((0, -3)\) is given by:
[tex]\[ D = f_{xx}f_{yy} - (f_{xy})^2 \][/tex]
[tex]\[ D = (-6)(-6) - (-5)^2 \][/tex]
[tex]\[ D = 36 - 25 \][/tex]
[tex]\[ D = 11 \][/tex]
### Step 5: Classify the critical point
Since \( D > 0 \) and \( f_{xx} < 0 \):
- The critical point \((0, -3)\) is a relative maximum.
Therefore, the correct answer is:
B. There are no relative maxima.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.