Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's determine the locations of any relative extrema and identify any saddle points for the given function:
[tex]\[ f(x, y) = -3x^2 - 5xy - 3y^2 - 15x - 18y + 5 \][/tex]
### Step 1: Find the first partial derivatives
First, we need to calculate the partial derivatives of \( f \) with respect to \( x \) and \( y \):
[tex]\[ f_x = \frac{\partial f}{\partial x} \][/tex]
[tex]\[ f_x = -6x - 5y - 15 \][/tex]
[tex]\[ f_y = \frac{\partial f}{\partial y} \][/tex]
[tex]\[ f_y = -5x - 6y - 18 \][/tex]
### Step 2: Find critical points
To find the critical points, we set the first partial derivatives equal to zero and solve the resulting system of equations:
[tex]\[ -6x - 5y - 15 = 0 \][/tex]
[tex]\[ -5x - 6y - 18 = 0 \][/tex]
Solving this system of linear equations, we can use substitution or elimination method:
Multiply the first equation by 6 and the second by 5 to facilitate elimination of \( y \):
[tex]\[ -36x - 30y - 90 = 0 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -25x - 30y - 90 = 0 \quad \text{(Equation 2)} \][/tex]
Now subtract Equation 2 from Equation 1:
[tex]\[ (-36x - 30y - 90) - (-25x - 30y - 90) = 0 \][/tex]
[tex]\[ -36x + 25x = 0 \][/tex]
[tex]\[ -11x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
Substitute \( x = 0 \) back into one of the original equations, say \( -6x - 5y - 15 = 0 \):
[tex]\[ -6(0) - 5y - 15 = 0 \][/tex]
[tex]\[ -5y - 15 = 0 \][/tex]
[tex]\[ -5y = 15 \][/tex]
[tex]\[ y = -3 \][/tex]
So, the critical point is:
[tex]\[ (x, y) = (0, -3) \][/tex]
### Step 3: Find the second partial derivatives
Now, we need to find the second partial derivatives to determine the nature of the critical point:
[tex]\[ f_{xx} = \frac{\partial^2 f}{\partial x^2} \][/tex]
[tex]\[ f_{xx} = -6 \][/tex]
[tex]\[ f_{yy} = \frac{\partial^2 f}{\partial y^2} \][/tex]
[tex]\[ f_{yy} = -6 \][/tex]
[tex]\[ f_{xy} = \frac{\partial^2 f}{\partial x \partial y} \][/tex]
[tex]\[ f_{xy} = -5 \][/tex]
### Step 4: Evaluate the Hessian determinant
The Hessian determinant \( D \) at the critical point \((0, -3)\) is given by:
[tex]\[ D = f_{xx}f_{yy} - (f_{xy})^2 \][/tex]
[tex]\[ D = (-6)(-6) - (-5)^2 \][/tex]
[tex]\[ D = 36 - 25 \][/tex]
[tex]\[ D = 11 \][/tex]
### Step 5: Classify the critical point
Since \( D > 0 \) and \( f_{xx} < 0 \):
- The critical point \((0, -3)\) is a relative maximum.
Therefore, the correct answer is:
B. There are no relative maxima.
[tex]\[ f(x, y) = -3x^2 - 5xy - 3y^2 - 15x - 18y + 5 \][/tex]
### Step 1: Find the first partial derivatives
First, we need to calculate the partial derivatives of \( f \) with respect to \( x \) and \( y \):
[tex]\[ f_x = \frac{\partial f}{\partial x} \][/tex]
[tex]\[ f_x = -6x - 5y - 15 \][/tex]
[tex]\[ f_y = \frac{\partial f}{\partial y} \][/tex]
[tex]\[ f_y = -5x - 6y - 18 \][/tex]
### Step 2: Find critical points
To find the critical points, we set the first partial derivatives equal to zero and solve the resulting system of equations:
[tex]\[ -6x - 5y - 15 = 0 \][/tex]
[tex]\[ -5x - 6y - 18 = 0 \][/tex]
Solving this system of linear equations, we can use substitution or elimination method:
Multiply the first equation by 6 and the second by 5 to facilitate elimination of \( y \):
[tex]\[ -36x - 30y - 90 = 0 \quad \text{(Equation 1)} \][/tex]
[tex]\[ -25x - 30y - 90 = 0 \quad \text{(Equation 2)} \][/tex]
Now subtract Equation 2 from Equation 1:
[tex]\[ (-36x - 30y - 90) - (-25x - 30y - 90) = 0 \][/tex]
[tex]\[ -36x + 25x = 0 \][/tex]
[tex]\[ -11x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
Substitute \( x = 0 \) back into one of the original equations, say \( -6x - 5y - 15 = 0 \):
[tex]\[ -6(0) - 5y - 15 = 0 \][/tex]
[tex]\[ -5y - 15 = 0 \][/tex]
[tex]\[ -5y = 15 \][/tex]
[tex]\[ y = -3 \][/tex]
So, the critical point is:
[tex]\[ (x, y) = (0, -3) \][/tex]
### Step 3: Find the second partial derivatives
Now, we need to find the second partial derivatives to determine the nature of the critical point:
[tex]\[ f_{xx} = \frac{\partial^2 f}{\partial x^2} \][/tex]
[tex]\[ f_{xx} = -6 \][/tex]
[tex]\[ f_{yy} = \frac{\partial^2 f}{\partial y^2} \][/tex]
[tex]\[ f_{yy} = -6 \][/tex]
[tex]\[ f_{xy} = \frac{\partial^2 f}{\partial x \partial y} \][/tex]
[tex]\[ f_{xy} = -5 \][/tex]
### Step 4: Evaluate the Hessian determinant
The Hessian determinant \( D \) at the critical point \((0, -3)\) is given by:
[tex]\[ D = f_{xx}f_{yy} - (f_{xy})^2 \][/tex]
[tex]\[ D = (-6)(-6) - (-5)^2 \][/tex]
[tex]\[ D = 36 - 25 \][/tex]
[tex]\[ D = 11 \][/tex]
### Step 5: Classify the critical point
Since \( D > 0 \) and \( f_{xx} < 0 \):
- The critical point \((0, -3)\) is a relative maximum.
Therefore, the correct answer is:
B. There are no relative maxima.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.