Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To minimize the labor cost function \(L(x, y) = \frac{3}{2} x^2 + y^2 - 4x - 6y - 2xy + 116\), we need to find the critical points by taking the partial derivatives of \(L\) with respect to \(x\) and \(y\), and setting them equal to zero.
First, we compute the partial derivative of \(L\) with respect to \(x\):
[tex]\[ L_x = \frac{\partial}{\partial x} \left( \frac{3}{2} x^2 + y^2 - 4x - 6y - 2xy + 116 \right) \][/tex]
Calculating each term separately, we get:
[tex]\[ \frac{\partial}{\partial x} \left( \frac{3}{2}x^2 \right) = 3x \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( y^2 \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -4x \right) = -4 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -6y \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -2xy \right) = -2y \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( 116 \right) = 0 \][/tex]
Combining these, we have:
[tex]\[ L_x = 3x - 4 - 2y \][/tex]
Next, we compute the partial derivative of \(L\) with respect to \(y\):
[tex]\[ L_y = \frac{\partial}{\partial y} \left( \frac{3}{2} x^2 + y^2 - 4x - 6y - 2xy + 116 \right) \][/tex]
Calculating each term separately, we get:
[tex]\[ \frac{\partial}{\partial y} \left( \frac{3}{2}x^2 \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( y^2 \right) = 2y \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -4x \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -6y \right) = -6 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -2xy \right) = -2x \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( 116 \right) = 0 \][/tex]
Combining these, we have:
[tex]\[ L_y = 2y - 6 - 2x \][/tex]
To find the critical points, we set \(L_x = 0\) and \(L_y = 0\):
[tex]\[ 3x - 4 - 2y = 0 \quad \text{(1)} \][/tex]
[tex]\[ 2y - 6 - 2x = 0 \quad \text{(2)} \][/tex]
First, let's solve equation (2) for \(y\):
[tex]\[ 2y - 6 - 2x = 0 \][/tex]
[tex]\[ 2y = 2x + 6 \][/tex]
[tex]\[ y = x + 3 \][/tex]
Now, substitute \(y = x + 3\) into equation (1):
[tex]\[ 3x - 4 - 2(x + 3) = 0 \][/tex]
[tex]\[ 3x - 4 - 2x - 6 = 0 \][/tex]
[tex]\[ x - 10 = 0 \][/tex]
[tex]\[ x = 10 \][/tex]
Using \(x = 10\) in \(y = x + 3\), we get:
[tex]\[ y = 10 + 3 \][/tex]
[tex]\[ y = 13 \][/tex]
Thus, the values of \(x\) and \(y\) that minimize the labor cost are \(x = 10\) hours and \(y = 13\) hours.
Now, we find the minimum labor cost by substituting \(x = 10\) and \(y = 13\) back into the labor cost function \(L(x, y)\):
[tex]\[ L(10, 13) = \frac{3}{2} (10)^2 + (13)^2 - 4(10) - 6(13) - 2(10)(13) + 116 \][/tex]
Calculate step by step:
[tex]\[ \frac{3}{2} (10)^2 = \frac{3}{2} \cdot 100 = 150 \][/tex]
[tex]\[ (13)^2 = 169 \][/tex]
[tex]\[ -4(10) = -40 \][/tex]
[tex]\[ -6(13) = -78 \][/tex]
[tex]\[ -2(10)(13) = -260 \][/tex]
[tex]\[ 116 \][/tex]
Now, combine these results:
[tex]\[ L(10, 13) = 150 + 169 - 40 - 78 - 260 + 116 \][/tex]
Calculate the total:
[tex]\[ L(10, 13) = 57 \][/tex]
Thus, the minimum labor cost is $57.
To summarize, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that minimize the labor cost are [tex]\(x = 10\)[/tex] and [tex]\(y = 13\)[/tex], and the minimum labor cost is $57.
First, we compute the partial derivative of \(L\) with respect to \(x\):
[tex]\[ L_x = \frac{\partial}{\partial x} \left( \frac{3}{2} x^2 + y^2 - 4x - 6y - 2xy + 116 \right) \][/tex]
Calculating each term separately, we get:
[tex]\[ \frac{\partial}{\partial x} \left( \frac{3}{2}x^2 \right) = 3x \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( y^2 \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -4x \right) = -4 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -6y \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -2xy \right) = -2y \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( 116 \right) = 0 \][/tex]
Combining these, we have:
[tex]\[ L_x = 3x - 4 - 2y \][/tex]
Next, we compute the partial derivative of \(L\) with respect to \(y\):
[tex]\[ L_y = \frac{\partial}{\partial y} \left( \frac{3}{2} x^2 + y^2 - 4x - 6y - 2xy + 116 \right) \][/tex]
Calculating each term separately, we get:
[tex]\[ \frac{\partial}{\partial y} \left( \frac{3}{2}x^2 \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( y^2 \right) = 2y \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -4x \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -6y \right) = -6 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -2xy \right) = -2x \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( 116 \right) = 0 \][/tex]
Combining these, we have:
[tex]\[ L_y = 2y - 6 - 2x \][/tex]
To find the critical points, we set \(L_x = 0\) and \(L_y = 0\):
[tex]\[ 3x - 4 - 2y = 0 \quad \text{(1)} \][/tex]
[tex]\[ 2y - 6 - 2x = 0 \quad \text{(2)} \][/tex]
First, let's solve equation (2) for \(y\):
[tex]\[ 2y - 6 - 2x = 0 \][/tex]
[tex]\[ 2y = 2x + 6 \][/tex]
[tex]\[ y = x + 3 \][/tex]
Now, substitute \(y = x + 3\) into equation (1):
[tex]\[ 3x - 4 - 2(x + 3) = 0 \][/tex]
[tex]\[ 3x - 4 - 2x - 6 = 0 \][/tex]
[tex]\[ x - 10 = 0 \][/tex]
[tex]\[ x = 10 \][/tex]
Using \(x = 10\) in \(y = x + 3\), we get:
[tex]\[ y = 10 + 3 \][/tex]
[tex]\[ y = 13 \][/tex]
Thus, the values of \(x\) and \(y\) that minimize the labor cost are \(x = 10\) hours and \(y = 13\) hours.
Now, we find the minimum labor cost by substituting \(x = 10\) and \(y = 13\) back into the labor cost function \(L(x, y)\):
[tex]\[ L(10, 13) = \frac{3}{2} (10)^2 + (13)^2 - 4(10) - 6(13) - 2(10)(13) + 116 \][/tex]
Calculate step by step:
[tex]\[ \frac{3}{2} (10)^2 = \frac{3}{2} \cdot 100 = 150 \][/tex]
[tex]\[ (13)^2 = 169 \][/tex]
[tex]\[ -4(10) = -40 \][/tex]
[tex]\[ -6(13) = -78 \][/tex]
[tex]\[ -2(10)(13) = -260 \][/tex]
[tex]\[ 116 \][/tex]
Now, combine these results:
[tex]\[ L(10, 13) = 150 + 169 - 40 - 78 - 260 + 116 \][/tex]
Calculate the total:
[tex]\[ L(10, 13) = 57 \][/tex]
Thus, the minimum labor cost is $57.
To summarize, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that minimize the labor cost are [tex]\(x = 10\)[/tex] and [tex]\(y = 13\)[/tex], and the minimum labor cost is $57.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.