Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the expression \(-\frac{1}{28} - \left(-\frac{1}{42}\right)\), follow these steps:
1. First, simplify the expression inside the parentheses:
[tex]\[ -\left(-\frac{1}{42}\right) = \frac{1}{42} \][/tex]
2. Rewrite the original expression with this simplification:
[tex]\[ -\frac{1}{28} + \frac{1}{42} \][/tex]
3. Next, find a common denominator for the fractions. The denominators are 28 and 42. The least common multiple (LCM) of 28 and 42 is 84.
4. Convert each fraction to have the common denominator of 84:
[tex]\[ -\frac{1}{28} = -\frac{1 \times 3}{28 \times 3} = -\frac{3}{84} \][/tex]
[tex]\[ \frac{1}{42} = \frac{1 \times 2}{42 \times 2} = \frac{2}{84} \][/tex]
5. Now, with a common denominator, add the two fractions:
[tex]\[ -\frac{3}{84} + \frac{2}{84} = \frac{-3 + 2}{84} = \frac{-1}{84} \][/tex]
6. Thus, the result of the expression is:
[tex]\[ -\frac{1}{84} \][/tex]
To summarize the steps clearly:
- Simplify \(-\left(-\frac{1}{42}\right)\) to \(\frac{1}{42}\).
- Find a common denominator for the fractions, converting them to \(-\frac{3}{84}\) and \(\frac{2}{84}\).
- Add these fractions to get \(\frac{-1}{84}\).
The final result is [tex]\(\boxed{-\frac{1}{84}}\)[/tex].
1. First, simplify the expression inside the parentheses:
[tex]\[ -\left(-\frac{1}{42}\right) = \frac{1}{42} \][/tex]
2. Rewrite the original expression with this simplification:
[tex]\[ -\frac{1}{28} + \frac{1}{42} \][/tex]
3. Next, find a common denominator for the fractions. The denominators are 28 and 42. The least common multiple (LCM) of 28 and 42 is 84.
4. Convert each fraction to have the common denominator of 84:
[tex]\[ -\frac{1}{28} = -\frac{1 \times 3}{28 \times 3} = -\frac{3}{84} \][/tex]
[tex]\[ \frac{1}{42} = \frac{1 \times 2}{42 \times 2} = \frac{2}{84} \][/tex]
5. Now, with a common denominator, add the two fractions:
[tex]\[ -\frac{3}{84} + \frac{2}{84} = \frac{-3 + 2}{84} = \frac{-1}{84} \][/tex]
6. Thus, the result of the expression is:
[tex]\[ -\frac{1}{84} \][/tex]
To summarize the steps clearly:
- Simplify \(-\left(-\frac{1}{42}\right)\) to \(\frac{1}{42}\).
- Find a common denominator for the fractions, converting them to \(-\frac{3}{84}\) and \(\frac{2}{84}\).
- Add these fractions to get \(\frac{-1}{84}\).
The final result is [tex]\(\boxed{-\frac{1}{84}}\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.