Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's explore the given problem step-by-step.
The length of voicemails for a family is normally distributed with:
- Mean [tex]$(μ) = 40$[/tex] seconds
- Standard Deviation [tex]$(σ) = 10$[/tex] seconds
We need to find the probability that a given voicemail's length [tex]$(v)$[/tex] falls between 10 and 40 seconds: [tex]$P(10 < v < 40)$[/tex].
### Step 1: Determine the Z-scores
To standardize our values, we need to compute the Z-scores for the boundaries of this interval:
- For [tex]$v = 10$[/tex] seconds:
[tex]\[ z_{10} = \frac{10 - 40}{10} = -3 \][/tex]
- For [tex]$v = 40$[/tex] seconds:
[tex]\[ z_{40} = \frac{40 - 40}{10} = 0 \][/tex]
### Step 2: Apply the Empirical (68%-95%-99.7%) Rule
The Empirical Rule tells us about the distribution of data in a normal distribution:
- Approximately 68% of the data lies within 1 standard deviation of the mean [tex]$(μ ± σ)$[/tex].
- Approximately 95% of the data lies within 2 standard deviations of the mean [tex]$(μ ± 2σ)$[/tex].
- Approximately 99.7% of the data lies within 3 standard deviations of the mean [tex]$(μ ± 3σ)$[/tex].
Next, let's identify the ranges for these standard deviations:
- 1 standard deviation: [tex]$[30, 50]$[/tex]
- 2 standard deviations: [tex]$[20, 60]$[/tex]
- 3 standard deviations: [tex]$[10, 70]$[/tex]
### Step 3: Probability Calculations
Since [tex]$v = 40$[/tex] is exactly the mean, it is right at the median of the distribution. Thus, we understand that the area to the left of [tex]$v = 40$[/tex] is exactly 50% ([tex]$0.5$[/tex]) of the total area under the normal distribution curve.
Next, let's focus on [tex]$v = 10$[/tex] which is [tex]$3$[/tex] standard deviations below the mean. According to the Empirical Rule, 99.7% of the data falls within [tex]$3$[/tex] standard deviations of the mean [tex]$(10 < v < 70)$[/tex]. Therefore, the remaining portion outside this range is:
[tex]\[ (1 - 0.997) = 0.003 = 0.3\% \][/tex]
This remaining portion is divided equally between both tails (left and right of the distribution), hence:
[tex]\[ \text{Probability of } v < 10 \text{ seconds} = \frac{0.003}{2} = 0.0015 \][/tex]
### Step 4: Calculate Desired Probability
Finally, the probability that the voicemail falls between [tex]$10$[/tex] and [tex]$40$[/tex] seconds is the area under the curve from [tex]$v = 10$[/tex] to [tex]$v = 40$[/tex]:
[tex]\[ P(10 < v < 40) = \text{Total area up to } v = 40 \text{ (0.5)} - \text{Probability of } v < 10 \text{ (0.0015)} \][/tex]
[tex]\[ P(10 < v < 40) = 0.5 - 0.0015 = 0.4985 \][/tex]
Thus, the probability is 0.4985 or 49.85%.
### Summary and Additional Information
- Z-scores: [tex]$z_{10} = -3$[/tex], [tex]$z_{40} = 0$[/tex]
- Range within 1 standard deviation: [tex]$30$[/tex] to [tex]$50$[/tex] seconds
- Range within 2 standard deviations: [tex]$20$[/tex] to [tex]$60$[/tex] seconds
- Range within 3 standard deviations: [tex]$10$[/tex] to [tex]$70$[/tex] seconds
- Probability [tex]$(10 < v < 40)$[/tex]: [tex]$0.4985$[/tex]
The final answer is that the probability of a voicemail length being between 10 and 40 seconds is [tex]$0.4985$[/tex] or 49.85%.
The length of voicemails for a family is normally distributed with:
- Mean [tex]$(μ) = 40$[/tex] seconds
- Standard Deviation [tex]$(σ) = 10$[/tex] seconds
We need to find the probability that a given voicemail's length [tex]$(v)$[/tex] falls between 10 and 40 seconds: [tex]$P(10 < v < 40)$[/tex].
### Step 1: Determine the Z-scores
To standardize our values, we need to compute the Z-scores for the boundaries of this interval:
- For [tex]$v = 10$[/tex] seconds:
[tex]\[ z_{10} = \frac{10 - 40}{10} = -3 \][/tex]
- For [tex]$v = 40$[/tex] seconds:
[tex]\[ z_{40} = \frac{40 - 40}{10} = 0 \][/tex]
### Step 2: Apply the Empirical (68%-95%-99.7%) Rule
The Empirical Rule tells us about the distribution of data in a normal distribution:
- Approximately 68% of the data lies within 1 standard deviation of the mean [tex]$(μ ± σ)$[/tex].
- Approximately 95% of the data lies within 2 standard deviations of the mean [tex]$(μ ± 2σ)$[/tex].
- Approximately 99.7% of the data lies within 3 standard deviations of the mean [tex]$(μ ± 3σ)$[/tex].
Next, let's identify the ranges for these standard deviations:
- 1 standard deviation: [tex]$[30, 50]$[/tex]
- 2 standard deviations: [tex]$[20, 60]$[/tex]
- 3 standard deviations: [tex]$[10, 70]$[/tex]
### Step 3: Probability Calculations
Since [tex]$v = 40$[/tex] is exactly the mean, it is right at the median of the distribution. Thus, we understand that the area to the left of [tex]$v = 40$[/tex] is exactly 50% ([tex]$0.5$[/tex]) of the total area under the normal distribution curve.
Next, let's focus on [tex]$v = 10$[/tex] which is [tex]$3$[/tex] standard deviations below the mean. According to the Empirical Rule, 99.7% of the data falls within [tex]$3$[/tex] standard deviations of the mean [tex]$(10 < v < 70)$[/tex]. Therefore, the remaining portion outside this range is:
[tex]\[ (1 - 0.997) = 0.003 = 0.3\% \][/tex]
This remaining portion is divided equally between both tails (left and right of the distribution), hence:
[tex]\[ \text{Probability of } v < 10 \text{ seconds} = \frac{0.003}{2} = 0.0015 \][/tex]
### Step 4: Calculate Desired Probability
Finally, the probability that the voicemail falls between [tex]$10$[/tex] and [tex]$40$[/tex] seconds is the area under the curve from [tex]$v = 10$[/tex] to [tex]$v = 40$[/tex]:
[tex]\[ P(10 < v < 40) = \text{Total area up to } v = 40 \text{ (0.5)} - \text{Probability of } v < 10 \text{ (0.0015)} \][/tex]
[tex]\[ P(10 < v < 40) = 0.5 - 0.0015 = 0.4985 \][/tex]
Thus, the probability is 0.4985 or 49.85%.
### Summary and Additional Information
- Z-scores: [tex]$z_{10} = -3$[/tex], [tex]$z_{40} = 0$[/tex]
- Range within 1 standard deviation: [tex]$30$[/tex] to [tex]$50$[/tex] seconds
- Range within 2 standard deviations: [tex]$20$[/tex] to [tex]$60$[/tex] seconds
- Range within 3 standard deviations: [tex]$10$[/tex] to [tex]$70$[/tex] seconds
- Probability [tex]$(10 < v < 40)$[/tex]: [tex]$0.4985$[/tex]
The final answer is that the probability of a voicemail length being between 10 and 40 seconds is [tex]$0.4985$[/tex] or 49.85%.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.