Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve this problem, we will use the properties of the normal distribution and the empirical rule, also known as the 68%-95%-99.7% rule.
First, let's outline the information given:
- Mean number of apples (\(\mu\)): 300 apples
- Standard deviation (\(\sigma\)): 30 apples
We need to find the probability that the number of apples on a given tree is between 240 and 300.
### Step-by-Step Solution:
1. Calculate the Z-scores for the bounds (240 and 300):
The Z-score is a measure of how many standard deviations an element is from the mean. It is calculated using the formula:
[tex]\[ Z = \frac{{X - \mu}}{\sigma} \][/tex]
For the lower bound (240 apples):
[tex]\[ Z_{\text{lower}} = \frac{240 - 300}{30} = \frac{-60}{30} = -2 \][/tex]
For the upper bound (300 apples):
[tex]\[ Z_{\text{upper}} = \frac{300 - 300}{30} = \frac{0}{30} = 0 \][/tex]
2. Interpret the Z-scores using the empirical rule:
According to the empirical rule, approximately:
- 68% of the data lies within 1 standard deviation of the mean.
- 95% of the data lies within 2 standard deviations of the mean.
- 99.7% of the data lies within 3 standard deviations of the mean.
Here, a Z-score of -2 corresponds to being 2 standard deviations below the mean, while a Z-score of 0 corresponds to the mean itself.
3. Determine the cumulative probabilities:
Using the empirical rule:
- The cumulative probability of being within 2 standard deviations below the mean and 2 standard deviations above the mean (from Z = -2 to Z = 2) is approximately 95%. Since this interval is symmetric, it includes 47.5% of the data below the mean and 47.5% above the mean.
- Since 240 apples is 2 standard deviations below the mean, the probability of having more than 240 apples is approximately \(50\% + 47.5\% = 97.5\%\).
4. Find the probability between the bounds:
Since we need the probability between 240 and 300 apples:
- The cumulative probability up to the mean (300 apples) is \(50\%\).
- The cumulative probability up to 240 apples (2 standard deviations below the mean) is given by the empirical rule as \(2.5\%\) (because \(100\% - 97.5\%\)).
Therefore, the probability of a tree having between 240 and 300 apples is the difference between these cumulative probabilities.
[tex]\[ P(240 < a < 300) = 50\% - 2.5\% = 0.50 - 0.025 = 0.475 \][/tex]
Finally, to express this as a percentage:
[tex]\[ P(240 < a < 300) = 47.5\% \][/tex]
This calculation aligns with the detailed step-by-step process provided by the values obtained.
First, let's outline the information given:
- Mean number of apples (\(\mu\)): 300 apples
- Standard deviation (\(\sigma\)): 30 apples
We need to find the probability that the number of apples on a given tree is between 240 and 300.
### Step-by-Step Solution:
1. Calculate the Z-scores for the bounds (240 and 300):
The Z-score is a measure of how many standard deviations an element is from the mean. It is calculated using the formula:
[tex]\[ Z = \frac{{X - \mu}}{\sigma} \][/tex]
For the lower bound (240 apples):
[tex]\[ Z_{\text{lower}} = \frac{240 - 300}{30} = \frac{-60}{30} = -2 \][/tex]
For the upper bound (300 apples):
[tex]\[ Z_{\text{upper}} = \frac{300 - 300}{30} = \frac{0}{30} = 0 \][/tex]
2. Interpret the Z-scores using the empirical rule:
According to the empirical rule, approximately:
- 68% of the data lies within 1 standard deviation of the mean.
- 95% of the data lies within 2 standard deviations of the mean.
- 99.7% of the data lies within 3 standard deviations of the mean.
Here, a Z-score of -2 corresponds to being 2 standard deviations below the mean, while a Z-score of 0 corresponds to the mean itself.
3. Determine the cumulative probabilities:
Using the empirical rule:
- The cumulative probability of being within 2 standard deviations below the mean and 2 standard deviations above the mean (from Z = -2 to Z = 2) is approximately 95%. Since this interval is symmetric, it includes 47.5% of the data below the mean and 47.5% above the mean.
- Since 240 apples is 2 standard deviations below the mean, the probability of having more than 240 apples is approximately \(50\% + 47.5\% = 97.5\%\).
4. Find the probability between the bounds:
Since we need the probability between 240 and 300 apples:
- The cumulative probability up to the mean (300 apples) is \(50\%\).
- The cumulative probability up to 240 apples (2 standard deviations below the mean) is given by the empirical rule as \(2.5\%\) (because \(100\% - 97.5\%\)).
Therefore, the probability of a tree having between 240 and 300 apples is the difference between these cumulative probabilities.
[tex]\[ P(240 < a < 300) = 50\% - 2.5\% = 0.50 - 0.025 = 0.475 \][/tex]
Finally, to express this as a percentage:
[tex]\[ P(240 < a < 300) = 47.5\% \][/tex]
This calculation aligns with the detailed step-by-step process provided by the values obtained.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.