Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

In a certain orchard, the number of apples (a) in a tree is normally distributed with a mean of 300 apples and a standard deviation of 30 apples. Find the probability that a given tree has between 330 and 390 apples.

Be sure to use the [tex]$68\%-95\%-99.7\%$[/tex] rule and do not round.

Sagot :

Certainly! Let's work through this step-by-step using the given parameters and the 68%-95%-99.7% rule.

### Given:
- The number of apples, \( a \), in a tree follows a normal distribution.
- Mean (\(\mu\)) = 300 apples.
- Standard deviation (\(\sigma\)) = 30 apples.

### Objective:
- To find the probability that a given tree has between 330 and 390 apples.

### Step 1: Calculate the Z-scores
We need to convert the given apple counts (330 and 390) to their respective Z-scores using the formula:

[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]

For 330 apples:

[tex]\[ Z_{\text{lower}} = \frac{330 - 300}{30} = \frac{30}{30} = 1.0 \][/tex]

For 390 apples:

[tex]\[ Z_{\text{upper}} = \frac{390 - 300}{30} = \frac{90}{30} = 3.0 \][/tex]

### Step 2: Use the 68%-95%-99.7% rule
The 68%-95%-99.7% rule (or Empirical Rule) is a way of understanding the distribution of data in a normal distribution.
- 68% of the data falls within 1 standard deviation of the mean (between \(Z = -1\) and \(Z = +1\)).
- 95% of the data falls within 2 standard deviations of the mean (between \(Z = -2\) and \(Z = +2\)).
- 99.7% of the data falls within 3 standard deviations of the mean (between \(Z = -3\) and \(Z = +3\)).

### Step 3: Determine probabilities
Using the Z-scores calculated:

For \( Z_{\text{lower}} = 1.0 \):
- The probability that \( Z \) is less than 1.0 is approximately 84%. In other words, P(Z < 1.0) = 0.84.

For \( Z_{\text{upper}} = 3.0 \):
- The probability that \( Z \) is less than 3.0 is approximately 99.85%. Thus, P(Z < 3.0) = 0.9985.

### Step 4: Calculate the probability between the Z-scores
- To find the probability that the number of apples lies between 330 and 390, we subtract the probability at \( Z_{\text{lower}} \) from the probability at \( Z_{\text{upper}} \):

[tex]\[ P(330 < a < 390) = P(Z < 3.0) - P(Z < 1.0) \][/tex]
[tex]\[ P(330 < a < 390) = 0.9985 - 0.84 \][/tex]
[tex]\[ P(330 < a < 390) = 0.1585 \][/tex]

### Conclusion
Therefore, the probability that a given tree has between 330 and 390 apples is approximately 0.1585 or 15.85%.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.