Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's go through the process step-by-step.
Given that \( c \| d \), this means that lines \( c \) and \( d \) are parallel.
To prove: \( m_c = m_d \)
Statements
1. \( c \| d \)
2. Equations for lines \( c \) and \( d \): \( c = m_c x + b_c \) and \( d = m_d x + b_d \)
3. Set the equations equal because \( c \parallel d \) implies that the slopes are the same: \( m_c x + b_c = m_d x + b_d \)
4. Subtract \( m_d x \) from both sides to isolate the terms containing \( x \): \( m_c x - m_d x = b_d - b_c \)
5. Factor out \( x \): \( x(m_c - m_d) = b_d - b_c \)
6. Solve for \( x \): \( x = \frac{b_d - b_c}{m_c - m_d} \)
7. Since \( c \parallel d \), \( x \) does not exist for any \( x \) in the real number line, meaning the denominator must be zero: \( m_c - m_d = 0 \)
8. Combine similar terms: \( m_c = m_d \)
Reasons
1. Given (c \|d)
2. Write equations for lines \( c \) and \( d \)
3. Given that \( c \parallel d \)
4. Subtraction property of equality
5. Distributive property
6. Division property of equality
7. \( x \) does not exist; therefore, the denominator must be 0
8. Addition property of equality
Thus, since [tex]\( c \| d \)[/tex], we have proved that [tex]\( m_c = m_d \)[/tex].
Given that \( c \| d \), this means that lines \( c \) and \( d \) are parallel.
To prove: \( m_c = m_d \)
Statements
1. \( c \| d \)
2. Equations for lines \( c \) and \( d \): \( c = m_c x + b_c \) and \( d = m_d x + b_d \)
3. Set the equations equal because \( c \parallel d \) implies that the slopes are the same: \( m_c x + b_c = m_d x + b_d \)
4. Subtract \( m_d x \) from both sides to isolate the terms containing \( x \): \( m_c x - m_d x = b_d - b_c \)
5. Factor out \( x \): \( x(m_c - m_d) = b_d - b_c \)
6. Solve for \( x \): \( x = \frac{b_d - b_c}{m_c - m_d} \)
7. Since \( c \parallel d \), \( x \) does not exist for any \( x \) in the real number line, meaning the denominator must be zero: \( m_c - m_d = 0 \)
8. Combine similar terms: \( m_c = m_d \)
Reasons
1. Given (c \|d)
2. Write equations for lines \( c \) and \( d \)
3. Given that \( c \parallel d \)
4. Subtraction property of equality
5. Distributive property
6. Division property of equality
7. \( x \) does not exist; therefore, the denominator must be 0
8. Addition property of equality
Thus, since [tex]\( c \| d \)[/tex], we have proved that [tex]\( m_c = m_d \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.