Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's go through the process step-by-step.
Given that \( c \| d \), this means that lines \( c \) and \( d \) are parallel.
To prove: \( m_c = m_d \)
Statements
1. \( c \| d \)
2. Equations for lines \( c \) and \( d \): \( c = m_c x + b_c \) and \( d = m_d x + b_d \)
3. Set the equations equal because \( c \parallel d \) implies that the slopes are the same: \( m_c x + b_c = m_d x + b_d \)
4. Subtract \( m_d x \) from both sides to isolate the terms containing \( x \): \( m_c x - m_d x = b_d - b_c \)
5. Factor out \( x \): \( x(m_c - m_d) = b_d - b_c \)
6. Solve for \( x \): \( x = \frac{b_d - b_c}{m_c - m_d} \)
7. Since \( c \parallel d \), \( x \) does not exist for any \( x \) in the real number line, meaning the denominator must be zero: \( m_c - m_d = 0 \)
8. Combine similar terms: \( m_c = m_d \)
Reasons
1. Given (c \|d)
2. Write equations for lines \( c \) and \( d \)
3. Given that \( c \parallel d \)
4. Subtraction property of equality
5. Distributive property
6. Division property of equality
7. \( x \) does not exist; therefore, the denominator must be 0
8. Addition property of equality
Thus, since [tex]\( c \| d \)[/tex], we have proved that [tex]\( m_c = m_d \)[/tex].
Given that \( c \| d \), this means that lines \( c \) and \( d \) are parallel.
To prove: \( m_c = m_d \)
Statements
1. \( c \| d \)
2. Equations for lines \( c \) and \( d \): \( c = m_c x + b_c \) and \( d = m_d x + b_d \)
3. Set the equations equal because \( c \parallel d \) implies that the slopes are the same: \( m_c x + b_c = m_d x + b_d \)
4. Subtract \( m_d x \) from both sides to isolate the terms containing \( x \): \( m_c x - m_d x = b_d - b_c \)
5. Factor out \( x \): \( x(m_c - m_d) = b_d - b_c \)
6. Solve for \( x \): \( x = \frac{b_d - b_c}{m_c - m_d} \)
7. Since \( c \parallel d \), \( x \) does not exist for any \( x \) in the real number line, meaning the denominator must be zero: \( m_c - m_d = 0 \)
8. Combine similar terms: \( m_c = m_d \)
Reasons
1. Given (c \|d)
2. Write equations for lines \( c \) and \( d \)
3. Given that \( c \parallel d \)
4. Subtraction property of equality
5. Distributive property
6. Division property of equality
7. \( x \) does not exist; therefore, the denominator must be 0
8. Addition property of equality
Thus, since [tex]\( c \| d \)[/tex], we have proved that [tex]\( m_c = m_d \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.