Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's go through the process step-by-step.
Given that \( c \| d \), this means that lines \( c \) and \( d \) are parallel.
To prove: \( m_c = m_d \)
Statements
1. \( c \| d \)
2. Equations for lines \( c \) and \( d \): \( c = m_c x + b_c \) and \( d = m_d x + b_d \)
3. Set the equations equal because \( c \parallel d \) implies that the slopes are the same: \( m_c x + b_c = m_d x + b_d \)
4. Subtract \( m_d x \) from both sides to isolate the terms containing \( x \): \( m_c x - m_d x = b_d - b_c \)
5. Factor out \( x \): \( x(m_c - m_d) = b_d - b_c \)
6. Solve for \( x \): \( x = \frac{b_d - b_c}{m_c - m_d} \)
7. Since \( c \parallel d \), \( x \) does not exist for any \( x \) in the real number line, meaning the denominator must be zero: \( m_c - m_d = 0 \)
8. Combine similar terms: \( m_c = m_d \)
Reasons
1. Given (c \|d)
2. Write equations for lines \( c \) and \( d \)
3. Given that \( c \parallel d \)
4. Subtraction property of equality
5. Distributive property
6. Division property of equality
7. \( x \) does not exist; therefore, the denominator must be 0
8. Addition property of equality
Thus, since [tex]\( c \| d \)[/tex], we have proved that [tex]\( m_c = m_d \)[/tex].
Given that \( c \| d \), this means that lines \( c \) and \( d \) are parallel.
To prove: \( m_c = m_d \)
Statements
1. \( c \| d \)
2. Equations for lines \( c \) and \( d \): \( c = m_c x + b_c \) and \( d = m_d x + b_d \)
3. Set the equations equal because \( c \parallel d \) implies that the slopes are the same: \( m_c x + b_c = m_d x + b_d \)
4. Subtract \( m_d x \) from both sides to isolate the terms containing \( x \): \( m_c x - m_d x = b_d - b_c \)
5. Factor out \( x \): \( x(m_c - m_d) = b_d - b_c \)
6. Solve for \( x \): \( x = \frac{b_d - b_c}{m_c - m_d} \)
7. Since \( c \parallel d \), \( x \) does not exist for any \( x \) in the real number line, meaning the denominator must be zero: \( m_c - m_d = 0 \)
8. Combine similar terms: \( m_c = m_d \)
Reasons
1. Given (c \|d)
2. Write equations for lines \( c \) and \( d \)
3. Given that \( c \parallel d \)
4. Subtraction property of equality
5. Distributive property
6. Division property of equality
7. \( x \) does not exist; therefore, the denominator must be 0
8. Addition property of equality
Thus, since [tex]\( c \| d \)[/tex], we have proved that [tex]\( m_c = m_d \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.