Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine what number should be added to both sides of the equation \( x^2 + 3x = 6 \) to complete the square, we will follow these steps:
1. Identify the coefficient of \( x \):
The given equation is \( x^2 + 3x = 6 \). The coefficient of \( x \) is \( 3 \).
2. Divide the coefficient of \( x \) by 2:
We take the coefficient of \( x \), which is \( 3 \), and divide it by \( 2 \):
[tex]\[ \frac{3}{2} \][/tex]
3. Square the result:
Take the result from the previous step and square it:
[tex]\[ \left( \frac{3}{2} \right)^2 \][/tex]
4. Simplify the square:
Simplify the expression \( \left( \frac{3}{2} \right)^2 \):
[tex]\[ \left( \frac{3}{2} \right)^2 = \frac{3 \times 3}{2 \times 2} = \frac{9}{4} \][/tex]
Thus, the number that should be added to both sides of the equation \( x^2 + 3x = 6 \) to complete the square is \( \frac{9}{4} \) or \( 2.25 \).
So the correct answer is:
[tex]\[ \boxed{\left( \frac{3}{2} \right)^2} \][/tex]
To verify, we can transform the equation with the added number to a perfect square trinomial:
[tex]\[ x^2 + 3x + \frac{9}{4} = 6 + \frac{9}{4} \][/tex]
This can be written as:
[tex]\[ \left( x + \frac{3}{2} \right)^2 = \frac{33}{4} \][/tex]
1. Identify the coefficient of \( x \):
The given equation is \( x^2 + 3x = 6 \). The coefficient of \( x \) is \( 3 \).
2. Divide the coefficient of \( x \) by 2:
We take the coefficient of \( x \), which is \( 3 \), and divide it by \( 2 \):
[tex]\[ \frac{3}{2} \][/tex]
3. Square the result:
Take the result from the previous step and square it:
[tex]\[ \left( \frac{3}{2} \right)^2 \][/tex]
4. Simplify the square:
Simplify the expression \( \left( \frac{3}{2} \right)^2 \):
[tex]\[ \left( \frac{3}{2} \right)^2 = \frac{3 \times 3}{2 \times 2} = \frac{9}{4} \][/tex]
Thus, the number that should be added to both sides of the equation \( x^2 + 3x = 6 \) to complete the square is \( \frac{9}{4} \) or \( 2.25 \).
So the correct answer is:
[tex]\[ \boxed{\left( \frac{3}{2} \right)^2} \][/tex]
To verify, we can transform the equation with the added number to a perfect square trinomial:
[tex]\[ x^2 + 3x + \frac{9}{4} = 6 + \frac{9}{4} \][/tex]
This can be written as:
[tex]\[ \left( x + \frac{3}{2} \right)^2 = \frac{33}{4} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.