Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the sector area created by the hands of a clock at 1:00 when the clock has a radius of 9 inches, we need to consider the fraction of the circle that this time represents and then calculate the corresponding area.
1. Fraction of the Circle:
The hands of the clock create a sector that represents 1/12 of the entire clock face, since there are 12 hours on a clock.
2. Area of the Full Circle:
The area \(A\) of a full circle can be found using the formula:
[tex]\[ A = \pi r^2 \][/tex]
where \(r\) is the radius. Given that the radius \(r = 9\) inches:
[tex]\[ A = \pi \times 9^2 = \pi \times 81 = 81\pi \, \text{in}^2 \][/tex]
3. Sector Area:
Since the sector area is 1/12 of the entire circle's area, we multiply the total area by this fraction:
[tex]\[ \text{Sector Area} = \frac{1}{12} \times 81\pi = \frac{81\pi}{12} = 6.75\pi \, \text{in}^2 \][/tex]
Therefore, the sector area created by the hands of a clock with a radius of 9 inches at 1:00 is
[tex]\[ \boxed{6.75 \pi \, \text{in}^2} \][/tex]
1. Fraction of the Circle:
The hands of the clock create a sector that represents 1/12 of the entire clock face, since there are 12 hours on a clock.
2. Area of the Full Circle:
The area \(A\) of a full circle can be found using the formula:
[tex]\[ A = \pi r^2 \][/tex]
where \(r\) is the radius. Given that the radius \(r = 9\) inches:
[tex]\[ A = \pi \times 9^2 = \pi \times 81 = 81\pi \, \text{in}^2 \][/tex]
3. Sector Area:
Since the sector area is 1/12 of the entire circle's area, we multiply the total area by this fraction:
[tex]\[ \text{Sector Area} = \frac{1}{12} \times 81\pi = \frac{81\pi}{12} = 6.75\pi \, \text{in}^2 \][/tex]
Therefore, the sector area created by the hands of a clock with a radius of 9 inches at 1:00 is
[tex]\[ \boxed{6.75 \pi \, \text{in}^2} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.