Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find all possible rational zeros of the polynomial \( h(x) = -7x^3 + 4x^2 - 8x - 3 \) using the Rational Zeros Theorem, we'll follow these steps:
### Step 1: Identify the Constant Term and Leading Coefficient
- The constant term of the polynomial \( h(x) \) is \( -3 \).
- The leading coefficient of the polynomial \( h(x) \) is \( -7 \).
### Step 2: List All Factors of the Constant Term (\(p\))
- Possible factors of \(-3\) are \( \pm 1, \pm 3 \).
### Step 3: List All Factors of the Leading Coefficient (\(q\))
- Possible factors of \(-7\) are \( \pm 1, \pm 7 \).
### Step 4: Form All Possible Ratios \( \frac{p}{q} \)
According to the Rational Zeros Theorem, any rational zero of the polynomial will be a ratio \( \frac{p}{q} \), where \( p \) is a factor of the constant term and \( q \) is a factor of the leading coefficient.
Thus, we consider all pairs:
- \( \frac{1}{1}, \frac{1}{-1}, \frac{1}{7}, \frac{1}{-7} \)
- \( \frac{-1}{1}, \frac{-1}{-1}, \frac{-1}{7}, \frac{-1}{-7} \)
- \( \frac{3}{1}, \frac{3}{-1}, \frac{3}{7}, \frac{3}{-7} \)
- \( \frac{-3}{1}, \frac{-3}{-1}, \frac{-3}{7}, \frac{-3}{-7} \)
### Step 5: Simplify Each Ratio and Remove Duplicates
After simplifying all ratios, we combine and remove duplicates from the list to get the final set of possible rational zeros:
[tex]\[ \left\{ \pm 1, \pm 3, \pm \frac{1}{7}, \pm \frac{3}{7} \right\} \][/tex]
### Step 6: Convert to Decimal Form for Clarity (Optional)
For convenience, we may present the possible rational zeros in decimal form:
[tex]\[ -3.0, -1.0, -0.42857142857142855, -0.14285714285714285, 0.14285714285714285, 0.42857142857142855, 1.0, 3.0 \][/tex]
### Conclusion
Listing all possible rational zeros, we obtain the following values:
[tex]\[ -3.0, -1.0, -0.42857142857142855, -0.14285714285714285, 0.14285714285714285, 0.42857142857142855, 1.0, 3.0 \][/tex]
These are the potential rational solutions for the given polynomial [tex]\( h(x) = -7x^3 + 4x^2 - 8x - 3 \)[/tex].
### Step 1: Identify the Constant Term and Leading Coefficient
- The constant term of the polynomial \( h(x) \) is \( -3 \).
- The leading coefficient of the polynomial \( h(x) \) is \( -7 \).
### Step 2: List All Factors of the Constant Term (\(p\))
- Possible factors of \(-3\) are \( \pm 1, \pm 3 \).
### Step 3: List All Factors of the Leading Coefficient (\(q\))
- Possible factors of \(-7\) are \( \pm 1, \pm 7 \).
### Step 4: Form All Possible Ratios \( \frac{p}{q} \)
According to the Rational Zeros Theorem, any rational zero of the polynomial will be a ratio \( \frac{p}{q} \), where \( p \) is a factor of the constant term and \( q \) is a factor of the leading coefficient.
Thus, we consider all pairs:
- \( \frac{1}{1}, \frac{1}{-1}, \frac{1}{7}, \frac{1}{-7} \)
- \( \frac{-1}{1}, \frac{-1}{-1}, \frac{-1}{7}, \frac{-1}{-7} \)
- \( \frac{3}{1}, \frac{3}{-1}, \frac{3}{7}, \frac{3}{-7} \)
- \( \frac{-3}{1}, \frac{-3}{-1}, \frac{-3}{7}, \frac{-3}{-7} \)
### Step 5: Simplify Each Ratio and Remove Duplicates
After simplifying all ratios, we combine and remove duplicates from the list to get the final set of possible rational zeros:
[tex]\[ \left\{ \pm 1, \pm 3, \pm \frac{1}{7}, \pm \frac{3}{7} \right\} \][/tex]
### Step 6: Convert to Decimal Form for Clarity (Optional)
For convenience, we may present the possible rational zeros in decimal form:
[tex]\[ -3.0, -1.0, -0.42857142857142855, -0.14285714285714285, 0.14285714285714285, 0.42857142857142855, 1.0, 3.0 \][/tex]
### Conclusion
Listing all possible rational zeros, we obtain the following values:
[tex]\[ -3.0, -1.0, -0.42857142857142855, -0.14285714285714285, 0.14285714285714285, 0.42857142857142855, 1.0, 3.0 \][/tex]
These are the potential rational solutions for the given polynomial [tex]\( h(x) = -7x^3 + 4x^2 - 8x - 3 \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.