Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find all possible rational zeros for the polynomial \( f(x) = x^3 - x^2 + 9x + 7 \) using the Rational Root Theorem, follow these steps:
1. Identify the leading coefficient (the coefficient of the highest power of \(x\)) and the constant term (the term without any \(x\)). For the polynomial \( f(x) = x^3 - x^2 + 9x + 7 \), the leading coefficient is 1 (from \(x^3\)) and the constant term is 7.
2. List the factors of the constant term and the leading coefficient.
- Factors of the constant term (7): \(\pm 1, \pm 7\)
- Factors of the leading coefficient (1): \(\pm 1\)
3. Form the possible rational zeros by taking each factor of the constant term and dividing it by each factor of the leading coefficient. Since the leading coefficient's factors are just \(\pm 1\), the possible rational zeros are simply the factors of the constant term.
4. List all combinations and remove duplicates:
- Positive combinations: \( \frac{1}{1} = 1\), \( \frac{7}{1} = 7 \)
- Negative combinations: \( \frac{-1}{1} = -1 \), \( \frac{-7}{1} = -7 \)
So, combining all these values, the list of all possible rational zeros for the polynomial \( f(x) = x^3 - x^2 + 9x + 7 \) is:
[tex]\[ \boxed{1, -1, 7, -7} \][/tex]
This list ensures that no value appears more than once.
1. Identify the leading coefficient (the coefficient of the highest power of \(x\)) and the constant term (the term without any \(x\)). For the polynomial \( f(x) = x^3 - x^2 + 9x + 7 \), the leading coefficient is 1 (from \(x^3\)) and the constant term is 7.
2. List the factors of the constant term and the leading coefficient.
- Factors of the constant term (7): \(\pm 1, \pm 7\)
- Factors of the leading coefficient (1): \(\pm 1\)
3. Form the possible rational zeros by taking each factor of the constant term and dividing it by each factor of the leading coefficient. Since the leading coefficient's factors are just \(\pm 1\), the possible rational zeros are simply the factors of the constant term.
4. List all combinations and remove duplicates:
- Positive combinations: \( \frac{1}{1} = 1\), \( \frac{7}{1} = 7 \)
- Negative combinations: \( \frac{-1}{1} = -1 \), \( \frac{-7}{1} = -7 \)
So, combining all these values, the list of all possible rational zeros for the polynomial \( f(x) = x^3 - x^2 + 9x + 7 \) is:
[tex]\[ \boxed{1, -1, 7, -7} \][/tex]
This list ensures that no value appears more than once.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.