Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the possible rational zeros of the polynomial \( f(x) = 10x^3 + 9x^2 - 9x + 4 \), we can use the Rational Zeros Theorem. Here's a step-by-step solution to find possible rational zeros:
### Step 1: Identifying Coefficients
First, identify the coefficients of the polynomial. For \( f(x) = 10x^3 + 9x^2 - 9x + 4 \):
- The constant term (\( a_0 \)) is 4.
- The leading coefficient (\( a_n \)) is 10.
### Step 2: Factors of the Constant Term (\( a_0 \))
List all factors of the constant term 4:
- Positive factors: 1, 2, 4
- Negative factors: -1, -2, -4
Thus, the set of factors for \( a_0 \) is: \( \{1, 2, 4, -1, -2, -4\} \).
### Step 3: Factors of the Leading Coefficient (\( a_n \))
List all factors of the leading coefficient 10:
- Positive factors: 1, 2, 5, 10
- Negative factors: -1, -2, -5, -10
Thus, the set of factors for \( a_n \) is: \( \{1, 2, 5, 10, -1, -2, -5, -10\} \).
### Step 4: Forming Possible Rational Zeros
The Rational Zeros Theorem states that the possible rational zeros of the polynomial are given by \( \frac{p}{q} \), where \( p \) is a factor of the constant term, and \( q \) is a factor of the leading coefficient.
Thus, we form all possible combinations of \( \frac{p}{q} \):
- Positive combinations: \( 1, 2, 4, \frac{2}{2} = 1, \frac{4}{2} = 2, \frac{1}{5} = 0.2, \frac{2}{5} = 0.4, \frac{4}{5} = 0.8, \frac{1}{10} = 0.1, \frac{2}{10} = 0.2, \frac{4}{10} = 0.4 \)
- Negative combinations: \(-1, -2, -4, \frac{-2}{2} = -1, \frac{-4}{2} = -2, \frac{-1}{5} = -0.2, \frac{-2}{5} = -0.4, \frac{-4}{5} = -0.8, \frac{-1}{10} = -0.1, \frac{-2}{10} = -0.2, \frac{-4}{10} = -0.4\)
After removing the duplicates, we get:
- Positive rational zeros: 1, 2, 4, 0.2, 0.4, 0.8, 0.1, 0.5
- Negative rational zeros: -1, -2, -4, -0.2, -0.4, -0.8, -0.1, -0.5
### Step 5: Listing All Possible Rational Zeros
Combining positive and negative rational zeros, we obtain the complete list:
[tex]\[ \{-4.0, -2.0, -1.0, -0.8, -0.5, -0.4, -0.2, -0.1, 0.1, 0.2, 0.4, 0.5, 0.8, 1.0, 2.0, 4.0\} \][/tex]
There should be no duplicates, and the list is typically presented in ascending order:
### Final Answer
The list of all possible rational zeros of the polynomial \( f(x) = 10x^3 + 9x^2 - 9x + 4 \) is:
[tex]\[ \{-4.0, -2.0, -1.0, -0.8, -0.5, -0.4, -0.2, -0.1, 0.1, 0.2, 0.4, 0.5, 0.8, 1.0, 2.0, 4.0\} \][/tex]
### Step 1: Identifying Coefficients
First, identify the coefficients of the polynomial. For \( f(x) = 10x^3 + 9x^2 - 9x + 4 \):
- The constant term (\( a_0 \)) is 4.
- The leading coefficient (\( a_n \)) is 10.
### Step 2: Factors of the Constant Term (\( a_0 \))
List all factors of the constant term 4:
- Positive factors: 1, 2, 4
- Negative factors: -1, -2, -4
Thus, the set of factors for \( a_0 \) is: \( \{1, 2, 4, -1, -2, -4\} \).
### Step 3: Factors of the Leading Coefficient (\( a_n \))
List all factors of the leading coefficient 10:
- Positive factors: 1, 2, 5, 10
- Negative factors: -1, -2, -5, -10
Thus, the set of factors for \( a_n \) is: \( \{1, 2, 5, 10, -1, -2, -5, -10\} \).
### Step 4: Forming Possible Rational Zeros
The Rational Zeros Theorem states that the possible rational zeros of the polynomial are given by \( \frac{p}{q} \), where \( p \) is a factor of the constant term, and \( q \) is a factor of the leading coefficient.
Thus, we form all possible combinations of \( \frac{p}{q} \):
- Positive combinations: \( 1, 2, 4, \frac{2}{2} = 1, \frac{4}{2} = 2, \frac{1}{5} = 0.2, \frac{2}{5} = 0.4, \frac{4}{5} = 0.8, \frac{1}{10} = 0.1, \frac{2}{10} = 0.2, \frac{4}{10} = 0.4 \)
- Negative combinations: \(-1, -2, -4, \frac{-2}{2} = -1, \frac{-4}{2} = -2, \frac{-1}{5} = -0.2, \frac{-2}{5} = -0.4, \frac{-4}{5} = -0.8, \frac{-1}{10} = -0.1, \frac{-2}{10} = -0.2, \frac{-4}{10} = -0.4\)
After removing the duplicates, we get:
- Positive rational zeros: 1, 2, 4, 0.2, 0.4, 0.8, 0.1, 0.5
- Negative rational zeros: -1, -2, -4, -0.2, -0.4, -0.8, -0.1, -0.5
### Step 5: Listing All Possible Rational Zeros
Combining positive and negative rational zeros, we obtain the complete list:
[tex]\[ \{-4.0, -2.0, -1.0, -0.8, -0.5, -0.4, -0.2, -0.1, 0.1, 0.2, 0.4, 0.5, 0.8, 1.0, 2.0, 4.0\} \][/tex]
There should be no duplicates, and the list is typically presented in ascending order:
### Final Answer
The list of all possible rational zeros of the polynomial \( f(x) = 10x^3 + 9x^2 - 9x + 4 \) is:
[tex]\[ \{-4.0, -2.0, -1.0, -0.8, -0.5, -0.4, -0.2, -0.1, 0.1, 0.2, 0.4, 0.5, 0.8, 1.0, 2.0, 4.0\} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.