Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, let's start by understanding the concept and using Coulomb's Law.
### Step-by-Step Solution:
1. Identify the charges and their values:
- Charge \( q_1 = 7.0 \mu C \) (microcoulombs).
- Charge \( q_2 = -4.5 \mu C \) (microcoulombs).
2. Convert the charges to Coulombs:
- \( q_1 = 7.0 \times 10^{-6} \) C.
- \( q_2 = -4.5 \times 10^{-6} \) C.
3. Determine the distance between the charges:
- The distance is given as \( 50 \) cm.
- Convert the distance to meters (since SI units should be used):
[tex]\[ r = \frac{50}{100} = 0.50 \text{ meters} \][/tex]
4. Coulomb's constant (\( k \)):
- Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \).
5. Apply Coulomb's Law to find the magnitude of the force:
- Coulomb's Law formula:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
- Substitute the known values:
[tex]\[ F = 8.99 \times 10^9 \, \frac{7.0 \times 10^{-6} \times 4.5 \times 10^{-6}}{(0.50)^2} \][/tex]
- Doing the necessary calculations, we will get:
[tex]\[ F \approx 1.13274 \text{ N} \][/tex]
So, the magnitude of the force is approximately \( 1.13274 \) Newtons.
6. Determine whether the force is attractive or repulsive:
- Since one charge is positive (\( q_1 = +7.0 \mu C \)) and one charge is negative (\( q_2 = -4.5 \mu C \)), the force between them is attractive. Opposite charges attract each other.
### Final Answer:
- Magnitude of the force: Approximately \( 1.13274 \) Newtons.
- Direction of the force: The force is attractive, meaning the charges are pulling towards each other.
Therefore, the [tex]\( +7.0 \mu C \)[/tex] charge experiences an attractive force of approximately [tex]\( 1.13274 \)[/tex] N towards the [tex]\( -4.5 \mu C \)[/tex] charge.
### Step-by-Step Solution:
1. Identify the charges and their values:
- Charge \( q_1 = 7.0 \mu C \) (microcoulombs).
- Charge \( q_2 = -4.5 \mu C \) (microcoulombs).
2. Convert the charges to Coulombs:
- \( q_1 = 7.0 \times 10^{-6} \) C.
- \( q_2 = -4.5 \times 10^{-6} \) C.
3. Determine the distance between the charges:
- The distance is given as \( 50 \) cm.
- Convert the distance to meters (since SI units should be used):
[tex]\[ r = \frac{50}{100} = 0.50 \text{ meters} \][/tex]
4. Coulomb's constant (\( k \)):
- Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \).
5. Apply Coulomb's Law to find the magnitude of the force:
- Coulomb's Law formula:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
- Substitute the known values:
[tex]\[ F = 8.99 \times 10^9 \, \frac{7.0 \times 10^{-6} \times 4.5 \times 10^{-6}}{(0.50)^2} \][/tex]
- Doing the necessary calculations, we will get:
[tex]\[ F \approx 1.13274 \text{ N} \][/tex]
So, the magnitude of the force is approximately \( 1.13274 \) Newtons.
6. Determine whether the force is attractive or repulsive:
- Since one charge is positive (\( q_1 = +7.0 \mu C \)) and one charge is negative (\( q_2 = -4.5 \mu C \)), the force between them is attractive. Opposite charges attract each other.
### Final Answer:
- Magnitude of the force: Approximately \( 1.13274 \) Newtons.
- Direction of the force: The force is attractive, meaning the charges are pulling towards each other.
Therefore, the [tex]\( +7.0 \mu C \)[/tex] charge experiences an attractive force of approximately [tex]\( 1.13274 \)[/tex] N towards the [tex]\( -4.5 \mu C \)[/tex] charge.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.