Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve this problem, let's start by understanding the concept and using Coulomb's Law.
### Step-by-Step Solution:
1. Identify the charges and their values:
- Charge \( q_1 = 7.0 \mu C \) (microcoulombs).
- Charge \( q_2 = -4.5 \mu C \) (microcoulombs).
2. Convert the charges to Coulombs:
- \( q_1 = 7.0 \times 10^{-6} \) C.
- \( q_2 = -4.5 \times 10^{-6} \) C.
3. Determine the distance between the charges:
- The distance is given as \( 50 \) cm.
- Convert the distance to meters (since SI units should be used):
[tex]\[ r = \frac{50}{100} = 0.50 \text{ meters} \][/tex]
4. Coulomb's constant (\( k \)):
- Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \).
5. Apply Coulomb's Law to find the magnitude of the force:
- Coulomb's Law formula:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
- Substitute the known values:
[tex]\[ F = 8.99 \times 10^9 \, \frac{7.0 \times 10^{-6} \times 4.5 \times 10^{-6}}{(0.50)^2} \][/tex]
- Doing the necessary calculations, we will get:
[tex]\[ F \approx 1.13274 \text{ N} \][/tex]
So, the magnitude of the force is approximately \( 1.13274 \) Newtons.
6. Determine whether the force is attractive or repulsive:
- Since one charge is positive (\( q_1 = +7.0 \mu C \)) and one charge is negative (\( q_2 = -4.5 \mu C \)), the force between them is attractive. Opposite charges attract each other.
### Final Answer:
- Magnitude of the force: Approximately \( 1.13274 \) Newtons.
- Direction of the force: The force is attractive, meaning the charges are pulling towards each other.
Therefore, the [tex]\( +7.0 \mu C \)[/tex] charge experiences an attractive force of approximately [tex]\( 1.13274 \)[/tex] N towards the [tex]\( -4.5 \mu C \)[/tex] charge.
### Step-by-Step Solution:
1. Identify the charges and their values:
- Charge \( q_1 = 7.0 \mu C \) (microcoulombs).
- Charge \( q_2 = -4.5 \mu C \) (microcoulombs).
2. Convert the charges to Coulombs:
- \( q_1 = 7.0 \times 10^{-6} \) C.
- \( q_2 = -4.5 \times 10^{-6} \) C.
3. Determine the distance between the charges:
- The distance is given as \( 50 \) cm.
- Convert the distance to meters (since SI units should be used):
[tex]\[ r = \frac{50}{100} = 0.50 \text{ meters} \][/tex]
4. Coulomb's constant (\( k \)):
- Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \).
5. Apply Coulomb's Law to find the magnitude of the force:
- Coulomb's Law formula:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
- Substitute the known values:
[tex]\[ F = 8.99 \times 10^9 \, \frac{7.0 \times 10^{-6} \times 4.5 \times 10^{-6}}{(0.50)^2} \][/tex]
- Doing the necessary calculations, we will get:
[tex]\[ F \approx 1.13274 \text{ N} \][/tex]
So, the magnitude of the force is approximately \( 1.13274 \) Newtons.
6. Determine whether the force is attractive or repulsive:
- Since one charge is positive (\( q_1 = +7.0 \mu C \)) and one charge is negative (\( q_2 = -4.5 \mu C \)), the force between them is attractive. Opposite charges attract each other.
### Final Answer:
- Magnitude of the force: Approximately \( 1.13274 \) Newtons.
- Direction of the force: The force is attractive, meaning the charges are pulling towards each other.
Therefore, the [tex]\( +7.0 \mu C \)[/tex] charge experiences an attractive force of approximately [tex]\( 1.13274 \)[/tex] N towards the [tex]\( -4.5 \mu C \)[/tex] charge.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.