Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, let's start by understanding the concept and using Coulomb's Law.
### Step-by-Step Solution:
1. Identify the charges and their values:
- Charge \( q_1 = 7.0 \mu C \) (microcoulombs).
- Charge \( q_2 = -4.5 \mu C \) (microcoulombs).
2. Convert the charges to Coulombs:
- \( q_1 = 7.0 \times 10^{-6} \) C.
- \( q_2 = -4.5 \times 10^{-6} \) C.
3. Determine the distance between the charges:
- The distance is given as \( 50 \) cm.
- Convert the distance to meters (since SI units should be used):
[tex]\[ r = \frac{50}{100} = 0.50 \text{ meters} \][/tex]
4. Coulomb's constant (\( k \)):
- Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \).
5. Apply Coulomb's Law to find the magnitude of the force:
- Coulomb's Law formula:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
- Substitute the known values:
[tex]\[ F = 8.99 \times 10^9 \, \frac{7.0 \times 10^{-6} \times 4.5 \times 10^{-6}}{(0.50)^2} \][/tex]
- Doing the necessary calculations, we will get:
[tex]\[ F \approx 1.13274 \text{ N} \][/tex]
So, the magnitude of the force is approximately \( 1.13274 \) Newtons.
6. Determine whether the force is attractive or repulsive:
- Since one charge is positive (\( q_1 = +7.0 \mu C \)) and one charge is negative (\( q_2 = -4.5 \mu C \)), the force between them is attractive. Opposite charges attract each other.
### Final Answer:
- Magnitude of the force: Approximately \( 1.13274 \) Newtons.
- Direction of the force: The force is attractive, meaning the charges are pulling towards each other.
Therefore, the [tex]\( +7.0 \mu C \)[/tex] charge experiences an attractive force of approximately [tex]\( 1.13274 \)[/tex] N towards the [tex]\( -4.5 \mu C \)[/tex] charge.
### Step-by-Step Solution:
1. Identify the charges and their values:
- Charge \( q_1 = 7.0 \mu C \) (microcoulombs).
- Charge \( q_2 = -4.5 \mu C \) (microcoulombs).
2. Convert the charges to Coulombs:
- \( q_1 = 7.0 \times 10^{-6} \) C.
- \( q_2 = -4.5 \times 10^{-6} \) C.
3. Determine the distance between the charges:
- The distance is given as \( 50 \) cm.
- Convert the distance to meters (since SI units should be used):
[tex]\[ r = \frac{50}{100} = 0.50 \text{ meters} \][/tex]
4. Coulomb's constant (\( k \)):
- Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \).
5. Apply Coulomb's Law to find the magnitude of the force:
- Coulomb's Law formula:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
- Substitute the known values:
[tex]\[ F = 8.99 \times 10^9 \, \frac{7.0 \times 10^{-6} \times 4.5 \times 10^{-6}}{(0.50)^2} \][/tex]
- Doing the necessary calculations, we will get:
[tex]\[ F \approx 1.13274 \text{ N} \][/tex]
So, the magnitude of the force is approximately \( 1.13274 \) Newtons.
6. Determine whether the force is attractive or repulsive:
- Since one charge is positive (\( q_1 = +7.0 \mu C \)) and one charge is negative (\( q_2 = -4.5 \mu C \)), the force between them is attractive. Opposite charges attract each other.
### Final Answer:
- Magnitude of the force: Approximately \( 1.13274 \) Newtons.
- Direction of the force: The force is attractive, meaning the charges are pulling towards each other.
Therefore, the [tex]\( +7.0 \mu C \)[/tex] charge experiences an attractive force of approximately [tex]\( 1.13274 \)[/tex] N towards the [tex]\( -4.5 \mu C \)[/tex] charge.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.