Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the coordinates of the turning point for the curve given by the equation \( y = 4x^2 - 56x \), we will complete the square for the quadratic expression. Here are the steps in detail:
1. Rewrite the given equation:
The original equation is:
[tex]\[ y = 4x^2 - 56x \][/tex]
2. Factor out the coefficient of \( x^2 \) from the quadratic expression:
We have the term \( 4x^2 \), so we factor out 4 from both terms involving \( x \):
[tex]\[ y = 4(x^2 - 14x) \][/tex]
3. Complete the square inside the parentheses:
To complete the square, we take half of the coefficient of \( x \) (which is -14), square it, and add-subtract it inside the parentheses:
[tex]\[ x^2 - 14x \rightarrow (x^2 - 14x + 49 - 49) \][/tex]
Notice that \( \left(\frac{-14}{2}\right)^2 = 49 \).
4. Rewrite the expression inside the parentheses with the added and subtracted square term:
[tex]\[ y = 4[(x^2 - 14x + 49) - 49] \][/tex]
5. Combine terms to form a perfect square trinomial:
The expression \( x^2 - 14x + 49 \) can be written as \( (x - 7)^2 \), so:
[tex]\[ y = 4[(x - 7)^2 - 49] \][/tex]
6. Simplify the expression by distributing the constant outside the parentheses:
[tex]\[ y = 4(x - 7)^2 - 4 \cdot 49 \][/tex]
[tex]\[ y = 4(x - 7)^2 - 196 \][/tex]
7. Identify the turning point from the completed square form:
The expression \( y = 4(x - 7)^2 - 196 \) reveals that the turning point occurs when \( (x - 7)^2 \) is minimized. Since \( (x - 7)^2 \) is non-negative and reaches its minimum value of 0 when \( x = 7 \):
[tex]\[ x - 7 = 0 \implies x = 7 \][/tex]
8. Find the corresponding \( y \)-coordinate by substituting \( x = 7 \) back into the completed square form:
[tex]\[ y = 4(7 - 7)^2 - 196 \][/tex]
[tex]\[ y = 4(0)^2 - 196 \][/tex]
[tex]\[ y = -196 \][/tex]
The coordinates of the turning point are therefore:
[tex]\[ (7, -196) \][/tex]
This completes the step-by-step process of completing the square and finding the turning point for the curve given by [tex]\( y = 4x^2 - 56x \)[/tex]. The turning point is at [tex]\( (7, -196) \)[/tex].
1. Rewrite the given equation:
The original equation is:
[tex]\[ y = 4x^2 - 56x \][/tex]
2. Factor out the coefficient of \( x^2 \) from the quadratic expression:
We have the term \( 4x^2 \), so we factor out 4 from both terms involving \( x \):
[tex]\[ y = 4(x^2 - 14x) \][/tex]
3. Complete the square inside the parentheses:
To complete the square, we take half of the coefficient of \( x \) (which is -14), square it, and add-subtract it inside the parentheses:
[tex]\[ x^2 - 14x \rightarrow (x^2 - 14x + 49 - 49) \][/tex]
Notice that \( \left(\frac{-14}{2}\right)^2 = 49 \).
4. Rewrite the expression inside the parentheses with the added and subtracted square term:
[tex]\[ y = 4[(x^2 - 14x + 49) - 49] \][/tex]
5. Combine terms to form a perfect square trinomial:
The expression \( x^2 - 14x + 49 \) can be written as \( (x - 7)^2 \), so:
[tex]\[ y = 4[(x - 7)^2 - 49] \][/tex]
6. Simplify the expression by distributing the constant outside the parentheses:
[tex]\[ y = 4(x - 7)^2 - 4 \cdot 49 \][/tex]
[tex]\[ y = 4(x - 7)^2 - 196 \][/tex]
7. Identify the turning point from the completed square form:
The expression \( y = 4(x - 7)^2 - 196 \) reveals that the turning point occurs when \( (x - 7)^2 \) is minimized. Since \( (x - 7)^2 \) is non-negative and reaches its minimum value of 0 when \( x = 7 \):
[tex]\[ x - 7 = 0 \implies x = 7 \][/tex]
8. Find the corresponding \( y \)-coordinate by substituting \( x = 7 \) back into the completed square form:
[tex]\[ y = 4(7 - 7)^2 - 196 \][/tex]
[tex]\[ y = 4(0)^2 - 196 \][/tex]
[tex]\[ y = -196 \][/tex]
The coordinates of the turning point are therefore:
[tex]\[ (7, -196) \][/tex]
This completes the step-by-step process of completing the square and finding the turning point for the curve given by [tex]\( y = 4x^2 - 56x \)[/tex]. The turning point is at [tex]\( (7, -196) \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.