At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the coordinates of the turning point for the curve given by the equation \( y = 4x^2 - 56x \), we will complete the square for the quadratic expression. Here are the steps in detail:
1. Rewrite the given equation:
The original equation is:
[tex]\[ y = 4x^2 - 56x \][/tex]
2. Factor out the coefficient of \( x^2 \) from the quadratic expression:
We have the term \( 4x^2 \), so we factor out 4 from both terms involving \( x \):
[tex]\[ y = 4(x^2 - 14x) \][/tex]
3. Complete the square inside the parentheses:
To complete the square, we take half of the coefficient of \( x \) (which is -14), square it, and add-subtract it inside the parentheses:
[tex]\[ x^2 - 14x \rightarrow (x^2 - 14x + 49 - 49) \][/tex]
Notice that \( \left(\frac{-14}{2}\right)^2 = 49 \).
4. Rewrite the expression inside the parentheses with the added and subtracted square term:
[tex]\[ y = 4[(x^2 - 14x + 49) - 49] \][/tex]
5. Combine terms to form a perfect square trinomial:
The expression \( x^2 - 14x + 49 \) can be written as \( (x - 7)^2 \), so:
[tex]\[ y = 4[(x - 7)^2 - 49] \][/tex]
6. Simplify the expression by distributing the constant outside the parentheses:
[tex]\[ y = 4(x - 7)^2 - 4 \cdot 49 \][/tex]
[tex]\[ y = 4(x - 7)^2 - 196 \][/tex]
7. Identify the turning point from the completed square form:
The expression \( y = 4(x - 7)^2 - 196 \) reveals that the turning point occurs when \( (x - 7)^2 \) is minimized. Since \( (x - 7)^2 \) is non-negative and reaches its minimum value of 0 when \( x = 7 \):
[tex]\[ x - 7 = 0 \implies x = 7 \][/tex]
8. Find the corresponding \( y \)-coordinate by substituting \( x = 7 \) back into the completed square form:
[tex]\[ y = 4(7 - 7)^2 - 196 \][/tex]
[tex]\[ y = 4(0)^2 - 196 \][/tex]
[tex]\[ y = -196 \][/tex]
The coordinates of the turning point are therefore:
[tex]\[ (7, -196) \][/tex]
This completes the step-by-step process of completing the square and finding the turning point for the curve given by [tex]\( y = 4x^2 - 56x \)[/tex]. The turning point is at [tex]\( (7, -196) \)[/tex].
1. Rewrite the given equation:
The original equation is:
[tex]\[ y = 4x^2 - 56x \][/tex]
2. Factor out the coefficient of \( x^2 \) from the quadratic expression:
We have the term \( 4x^2 \), so we factor out 4 from both terms involving \( x \):
[tex]\[ y = 4(x^2 - 14x) \][/tex]
3. Complete the square inside the parentheses:
To complete the square, we take half of the coefficient of \( x \) (which is -14), square it, and add-subtract it inside the parentheses:
[tex]\[ x^2 - 14x \rightarrow (x^2 - 14x + 49 - 49) \][/tex]
Notice that \( \left(\frac{-14}{2}\right)^2 = 49 \).
4. Rewrite the expression inside the parentheses with the added and subtracted square term:
[tex]\[ y = 4[(x^2 - 14x + 49) - 49] \][/tex]
5. Combine terms to form a perfect square trinomial:
The expression \( x^2 - 14x + 49 \) can be written as \( (x - 7)^2 \), so:
[tex]\[ y = 4[(x - 7)^2 - 49] \][/tex]
6. Simplify the expression by distributing the constant outside the parentheses:
[tex]\[ y = 4(x - 7)^2 - 4 \cdot 49 \][/tex]
[tex]\[ y = 4(x - 7)^2 - 196 \][/tex]
7. Identify the turning point from the completed square form:
The expression \( y = 4(x - 7)^2 - 196 \) reveals that the turning point occurs when \( (x - 7)^2 \) is minimized. Since \( (x - 7)^2 \) is non-negative and reaches its minimum value of 0 when \( x = 7 \):
[tex]\[ x - 7 = 0 \implies x = 7 \][/tex]
8. Find the corresponding \( y \)-coordinate by substituting \( x = 7 \) back into the completed square form:
[tex]\[ y = 4(7 - 7)^2 - 196 \][/tex]
[tex]\[ y = 4(0)^2 - 196 \][/tex]
[tex]\[ y = -196 \][/tex]
The coordinates of the turning point are therefore:
[tex]\[ (7, -196) \][/tex]
This completes the step-by-step process of completing the square and finding the turning point for the curve given by [tex]\( y = 4x^2 - 56x \)[/tex]. The turning point is at [tex]\( (7, -196) \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.