Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's break down and solve this problem step by step.
### Step 1: Understand the given information
Importantly, we know:
- The decay formula for carbon-14 is given by the relationship \( R = \left( \frac{1}{2} \right)^{\frac{t}{5730}} \), where \( R \) is the ratio of carbon-14 to carbon-12, \( t \) is the time in years, and 5730 years is the half-life of carbon-14.
- The ratio \( R = \frac{1}{8^{16}} \).
### Step 2: Setting up the equation
Given \( R = \left( \frac{1}{2} \right)^{\frac{t}{5730}} \) and \( R = \frac{1}{8^{16}} \), we equate the two expressions for \( R \):
[tex]\[ \left( \frac{1}{2} \right)^{\frac{t}{5730}} = \frac{1}{8^{16}} \][/tex]
### Step 3: Transform the right-hand side expression for simplicity
We rewrite \(\frac{1}{8^{16}}\) to match the left-hand side form:
[tex]\[ 8 = 2^3 \implies 8^{16} = (2^3)^{16} = 2^{48} \implies \frac{1}{8^{16}} = \frac{1}{2^{48}} = 2^{-48} \][/tex]
So the equation becomes:
[tex]\[ \left( \frac{1}{2} \right)^{\frac{t}{5730}} = 2^{-48} \][/tex]
### Step 4: Solve for \( t \) using logarithms
We take the natural logarithm (\(\ln\)) of both sides to solve for \( t \):
[tex]\[ \ln \left( \left( \frac{1}{2} \right)^{\frac{t}{5730}} \right) = \ln (2^{-48}) \][/tex]
Using the logarithm property \(\ln (a^b) = b \ln (a)\), we get:
[tex]\[ \frac{t}{5730} \ln \left( \frac{1}{2} \right) = \ln (2^{-48}) \][/tex]
Since \(\ln \left( \frac{1}{2} \right) = -\ln (2)\) and \(\ln (2^{-48}) = -48 \ln (2)\), the equation simplifies to:
[tex]\[ \frac{t}{5730} (-\ln (2)) = -48 \ln (2) \][/tex]
### Step 5: Isolate \( t \)
We can now solve for \( t \):
[tex]\[ t = \frac{-48 \ln (2) \cdot 5730}{-\ln (2)} \][/tex]
The \(\ln (2)\) cancels out:
[tex]\[ t = 48 \cdot 5730 \][/tex]
### Conclusion
Thus, the age \( t \) of the piece of wood is:
[tex]\[ t = 275040 \][/tex]
Rewriting this in the form given in the problem:
[tex]\[ t = (-8223) \frac{\ln \left(2^{-48}\right)}{\ln (e)} = 275040 \text{ years} \][/tex]
This completes our detailed step-by-step solution for determining the age of the piece of wood given the provided ratio of carbon-14 to carbon-12.
### Step 1: Understand the given information
Importantly, we know:
- The decay formula for carbon-14 is given by the relationship \( R = \left( \frac{1}{2} \right)^{\frac{t}{5730}} \), where \( R \) is the ratio of carbon-14 to carbon-12, \( t \) is the time in years, and 5730 years is the half-life of carbon-14.
- The ratio \( R = \frac{1}{8^{16}} \).
### Step 2: Setting up the equation
Given \( R = \left( \frac{1}{2} \right)^{\frac{t}{5730}} \) and \( R = \frac{1}{8^{16}} \), we equate the two expressions for \( R \):
[tex]\[ \left( \frac{1}{2} \right)^{\frac{t}{5730}} = \frac{1}{8^{16}} \][/tex]
### Step 3: Transform the right-hand side expression for simplicity
We rewrite \(\frac{1}{8^{16}}\) to match the left-hand side form:
[tex]\[ 8 = 2^3 \implies 8^{16} = (2^3)^{16} = 2^{48} \implies \frac{1}{8^{16}} = \frac{1}{2^{48}} = 2^{-48} \][/tex]
So the equation becomes:
[tex]\[ \left( \frac{1}{2} \right)^{\frac{t}{5730}} = 2^{-48} \][/tex]
### Step 4: Solve for \( t \) using logarithms
We take the natural logarithm (\(\ln\)) of both sides to solve for \( t \):
[tex]\[ \ln \left( \left( \frac{1}{2} \right)^{\frac{t}{5730}} \right) = \ln (2^{-48}) \][/tex]
Using the logarithm property \(\ln (a^b) = b \ln (a)\), we get:
[tex]\[ \frac{t}{5730} \ln \left( \frac{1}{2} \right) = \ln (2^{-48}) \][/tex]
Since \(\ln \left( \frac{1}{2} \right) = -\ln (2)\) and \(\ln (2^{-48}) = -48 \ln (2)\), the equation simplifies to:
[tex]\[ \frac{t}{5730} (-\ln (2)) = -48 \ln (2) \][/tex]
### Step 5: Isolate \( t \)
We can now solve for \( t \):
[tex]\[ t = \frac{-48 \ln (2) \cdot 5730}{-\ln (2)} \][/tex]
The \(\ln (2)\) cancels out:
[tex]\[ t = 48 \cdot 5730 \][/tex]
### Conclusion
Thus, the age \( t \) of the piece of wood is:
[tex]\[ t = 275040 \][/tex]
Rewriting this in the form given in the problem:
[tex]\[ t = (-8223) \frac{\ln \left(2^{-48}\right)}{\ln (e)} = 275040 \text{ years} \][/tex]
This completes our detailed step-by-step solution for determining the age of the piece of wood given the provided ratio of carbon-14 to carbon-12.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.