At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the equation for the given quadratic function \( f(x) \) that matches the table of values, we need to compare each of the given possible equations with the values in the table. Here is a detailed step-by-step solution:
1. Identifying the Points from the Table:
The table presents the following points \((x, f(x))\):
[tex]\[ (-8, 13), (-7, 6), (-6, 1), (-5, -2), (-4, -3), (-3, -2), (-2, 1), (-1, 6), (0, 13) \][/tex]
2. Possible Equations:
We have three potential equations for \( f(x) \):
- \( f(x) = (x + 5)^2 - 2 \)
- \( f(x) = (x + 4)^2 - 3 \)
- \( f(x) = (x - 4)^2 - 3 \)
3. Testing the First Equation:
Let's test \( f(x) = (x + 5)^2 - 2 \):
- For \( x = -8 \): \( f(-8) = ((-8) + 5)^2 - 2 = (-3)^2 - 2 = 9 - 2 = 7 \) (not 13)
Since it does not match the first point, this equation is incorrect.
4. Testing the Second Equation:
Let's test \( f(x) = (x + 4)^2 - 3 \):
- For \( x = -8 \): \( f(-8) = ((-8) + 4)^2 - 3 = (-4)^2 - 3 = 16 - 3 = 13 \) (matches the table)
- For \( x = -7 \): \( f(-7) = ((-7) + 4)^2 - 3 = (-3)^2 - 3 = 9 - 3 = 6 \) (matches the table)
- For \( x = -6 \): \( f(-6) = ((-6) + 4)^2 - 3 = (-2)^2 - 3 = 4 - 3 = 1 \) (matches the table)
- For \( x = -5 \): \( f(-5) = ((-5) + 4)^2 - 3 = (-1)^2 - 3 = 1 - 3 = -2 \) (matches the table)
- For \( x = -4 \): \( f(-4) = ((-4) + 4)^2 - 3 = (0)^2 - 3 = 0 - 3 = -3 \) (matches the table)
- For \( x = -3 \): \( f(-3) = ((-3) + 4)^2 - 3 = (1)^2 - 3 = 1 - 3 = -2 \) (matches the table)
- For \( x = -2 \): \( f(-2) = ((-2) + 4)^2 - 3 = (2)^2 - 3 = 4 - 3 = 1 \) (matches the table)
- For \( x = -1 \): \( f(-1) = ((-1) + 4)^2 - 3 = (3)^2 - 3 = 9 - 3 = 6 \) (matches the table)
- For \( x = 0 \): \( f(0) = ((0) + 4)^2 - 3 = (4)^2 - 3 = 16 - 3 = 13 \) (matches the table)
Since all points match, this equation is correct.
5. Testing the Third Equation:
Let's test \( f(x) = (x - 4)^2 - 3 \):
- For \( x = -8 \): \( f(-8) = ((-8) - 4)^2 - 3 = (-12)^2 - 3 = 144 - 3 = 141 \) (not 13)
Since it does not match the first point, this equation is incorrect.
Given the checks above, the equation of \( f(x) \) that correctly matches all the values in the table is:
[tex]\[ f(x) = (x + 4)^2 - 3 \][/tex]
1. Identifying the Points from the Table:
The table presents the following points \((x, f(x))\):
[tex]\[ (-8, 13), (-7, 6), (-6, 1), (-5, -2), (-4, -3), (-3, -2), (-2, 1), (-1, 6), (0, 13) \][/tex]
2. Possible Equations:
We have three potential equations for \( f(x) \):
- \( f(x) = (x + 5)^2 - 2 \)
- \( f(x) = (x + 4)^2 - 3 \)
- \( f(x) = (x - 4)^2 - 3 \)
3. Testing the First Equation:
Let's test \( f(x) = (x + 5)^2 - 2 \):
- For \( x = -8 \): \( f(-8) = ((-8) + 5)^2 - 2 = (-3)^2 - 2 = 9 - 2 = 7 \) (not 13)
Since it does not match the first point, this equation is incorrect.
4. Testing the Second Equation:
Let's test \( f(x) = (x + 4)^2 - 3 \):
- For \( x = -8 \): \( f(-8) = ((-8) + 4)^2 - 3 = (-4)^2 - 3 = 16 - 3 = 13 \) (matches the table)
- For \( x = -7 \): \( f(-7) = ((-7) + 4)^2 - 3 = (-3)^2 - 3 = 9 - 3 = 6 \) (matches the table)
- For \( x = -6 \): \( f(-6) = ((-6) + 4)^2 - 3 = (-2)^2 - 3 = 4 - 3 = 1 \) (matches the table)
- For \( x = -5 \): \( f(-5) = ((-5) + 4)^2 - 3 = (-1)^2 - 3 = 1 - 3 = -2 \) (matches the table)
- For \( x = -4 \): \( f(-4) = ((-4) + 4)^2 - 3 = (0)^2 - 3 = 0 - 3 = -3 \) (matches the table)
- For \( x = -3 \): \( f(-3) = ((-3) + 4)^2 - 3 = (1)^2 - 3 = 1 - 3 = -2 \) (matches the table)
- For \( x = -2 \): \( f(-2) = ((-2) + 4)^2 - 3 = (2)^2 - 3 = 4 - 3 = 1 \) (matches the table)
- For \( x = -1 \): \( f(-1) = ((-1) + 4)^2 - 3 = (3)^2 - 3 = 9 - 3 = 6 \) (matches the table)
- For \( x = 0 \): \( f(0) = ((0) + 4)^2 - 3 = (4)^2 - 3 = 16 - 3 = 13 \) (matches the table)
Since all points match, this equation is correct.
5. Testing the Third Equation:
Let's test \( f(x) = (x - 4)^2 - 3 \):
- For \( x = -8 \): \( f(-8) = ((-8) - 4)^2 - 3 = (-12)^2 - 3 = 144 - 3 = 141 \) (not 13)
Since it does not match the first point, this equation is incorrect.
Given the checks above, the equation of \( f(x) \) that correctly matches all the values in the table is:
[tex]\[ f(x) = (x + 4)^2 - 3 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.