Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the graph of the function \( f(x) = x^2 + 2x + 3 \), we should identify key features such as the vertex, direction in which the graph opens, and any additional important points.
1. Identify the Type of Function:
- The given function is a quadratic function because it has the form \( f(x) = ax^2 + bx + c \), with \( a = 1 \), \( b = 2 \), and \( c = 3 \).
2. Direction of the Parabola:
- Since the coefficient of \( x^2 \) (which is \( a \)) is positive (\( a = 1 \)), the parabola opens upwards.
3. Finding the Vertex:
- The vertex form of a quadratic function \( ax^2 + bx + c \) is given by completing the square.
- Start with \( f(x) = x^2 + 2x + 3 \).
- To complete the square, take the coefficient of \( x \) (which is 2), halve it (giving 1), and square it (giving 1). Add and subtract this square inside the function:
[tex]\[ f(x) = x^2 + 2x + 1 + 3 - 1 \][/tex]
- This results in:
[tex]\[ f(x) = (x + 1)^2 + 2 \][/tex]
- Therefore, the vertex form of the function is:
[tex]\[ f(x) = (x + 1)^2 + 2 \][/tex]
- From this form, it is clear that the vertex of the parabola is at \( (-1, 2) \).
4. Behavior of the Function:
- As \( x \) becomes very large in the positive or negative direction, the \( x^2 \) term dominates, causing \( f(x) \) to increase, confirming the parabola opens upwards.
5. Graphing the Function:
- The vertex at \( (-1, 2) \) is a critical point. Since the parabola opens upwards, it will be symmetric around a vertical line through the vertex (the axis of symmetry, \( x = -1 \)).
By these steps, we identified the key features of the graph of the function \( f(x) = x^2 + 2x + 3 \) and determined that it is a parabola opening upwards with its vertex at \( (-1, 2) \).
Thus, the correct graph will display these characteristics.
1. Identify the Type of Function:
- The given function is a quadratic function because it has the form \( f(x) = ax^2 + bx + c \), with \( a = 1 \), \( b = 2 \), and \( c = 3 \).
2. Direction of the Parabola:
- Since the coefficient of \( x^2 \) (which is \( a \)) is positive (\( a = 1 \)), the parabola opens upwards.
3. Finding the Vertex:
- The vertex form of a quadratic function \( ax^2 + bx + c \) is given by completing the square.
- Start with \( f(x) = x^2 + 2x + 3 \).
- To complete the square, take the coefficient of \( x \) (which is 2), halve it (giving 1), and square it (giving 1). Add and subtract this square inside the function:
[tex]\[ f(x) = x^2 + 2x + 1 + 3 - 1 \][/tex]
- This results in:
[tex]\[ f(x) = (x + 1)^2 + 2 \][/tex]
- Therefore, the vertex form of the function is:
[tex]\[ f(x) = (x + 1)^2 + 2 \][/tex]
- From this form, it is clear that the vertex of the parabola is at \( (-1, 2) \).
4. Behavior of the Function:
- As \( x \) becomes very large in the positive or negative direction, the \( x^2 \) term dominates, causing \( f(x) \) to increase, confirming the parabola opens upwards.
5. Graphing the Function:
- The vertex at \( (-1, 2) \) is a critical point. Since the parabola opens upwards, it will be symmetric around a vertical line through the vertex (the axis of symmetry, \( x = -1 \)).
By these steps, we identified the key features of the graph of the function \( f(x) = x^2 + 2x + 3 \) and determined that it is a parabola opening upwards with its vertex at \( (-1, 2) \).
Thus, the correct graph will display these characteristics.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.