Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the equation of the quadratic function that models the height of the ball \( h(t) \) at time \( t \), we need to use the given points and the standard form of the vertex equation of a parabola.
Given points:
- After 1 second, the ball is 15 feet high: (1, 15)
- After 4 seconds, the ball reaches its maximum height of 42 feet: (4, 42)
- After 7 seconds, it returns to a height of 15 feet: (7, 15)
We are given three key points on the parabolic flight path: the vertex \( (4, 42) \) and two other points \( (1, 15) \) and \( (7, 15) \).
The vertex form of a quadratic equation is:
[tex]\[ h(t) = a(t - h_{\text{shift}})^2 + k \][/tex]
where \( (h_{\text{shift}}, k) \) is the vertex of the parabola. From the problem, we know the vertex \((h_{\text{shift}}, k)\) is \( (4, 42) \).
Thus, we substitute \( h_{\text{shift}} = 4 \) and \( k = 42 \):
[tex]\[ h(t) = a(t - 4)^2 + 42 \][/tex]
Next, we need to find the coefficient \( a \) by plugging in one of the other points, say \( (1, 15) \).
Plugging in \( t = 1 \) and \( h(t) = 15 \):
[tex]\[ 15 = a(1 - 4)^2 + 42 \][/tex]
Simplify the equation:
[tex]\[ 15 = a(-3)^2 + 42 \][/tex]
[tex]\[ 15 = 9a + 42 \][/tex]
Subtract 42 from both sides to solve for \( a \):
[tex]\[ 15 - 42 = 9a \][/tex]
[tex]\[ -27 = 9a \][/tex]
[tex]\[ a = -3 \][/tex]
Thus, the quadratic function is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
To confirm, we verify with another point, \( (7, 15) \):
[tex]\[ h(7) = -3(7 - 4)^2 + 42 \][/tex]
[tex]\[ h(7) = -3(3)^2 + 42 \][/tex]
[tex]\[ h(7) = -3(9) + 42 \][/tex]
[tex]\[ h(7) = -27 + 42 \][/tex]
[tex]\[ h(7) = 15 \][/tex]
Both points satisfy the equation, confirming our solution is correct. Therefore, the equation modeling the height of the ball is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
Hence, the correct option is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
Given points:
- After 1 second, the ball is 15 feet high: (1, 15)
- After 4 seconds, the ball reaches its maximum height of 42 feet: (4, 42)
- After 7 seconds, it returns to a height of 15 feet: (7, 15)
We are given three key points on the parabolic flight path: the vertex \( (4, 42) \) and two other points \( (1, 15) \) and \( (7, 15) \).
The vertex form of a quadratic equation is:
[tex]\[ h(t) = a(t - h_{\text{shift}})^2 + k \][/tex]
where \( (h_{\text{shift}}, k) \) is the vertex of the parabola. From the problem, we know the vertex \((h_{\text{shift}}, k)\) is \( (4, 42) \).
Thus, we substitute \( h_{\text{shift}} = 4 \) and \( k = 42 \):
[tex]\[ h(t) = a(t - 4)^2 + 42 \][/tex]
Next, we need to find the coefficient \( a \) by plugging in one of the other points, say \( (1, 15) \).
Plugging in \( t = 1 \) and \( h(t) = 15 \):
[tex]\[ 15 = a(1 - 4)^2 + 42 \][/tex]
Simplify the equation:
[tex]\[ 15 = a(-3)^2 + 42 \][/tex]
[tex]\[ 15 = 9a + 42 \][/tex]
Subtract 42 from both sides to solve for \( a \):
[tex]\[ 15 - 42 = 9a \][/tex]
[tex]\[ -27 = 9a \][/tex]
[tex]\[ a = -3 \][/tex]
Thus, the quadratic function is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
To confirm, we verify with another point, \( (7, 15) \):
[tex]\[ h(7) = -3(7 - 4)^2 + 42 \][/tex]
[tex]\[ h(7) = -3(3)^2 + 42 \][/tex]
[tex]\[ h(7) = -3(9) + 42 \][/tex]
[tex]\[ h(7) = -27 + 42 \][/tex]
[tex]\[ h(7) = 15 \][/tex]
Both points satisfy the equation, confirming our solution is correct. Therefore, the equation modeling the height of the ball is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
Hence, the correct option is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.