At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the equation of the quadratic function that models the height of the ball \( h(t) \) at time \( t \), we need to use the given points and the standard form of the vertex equation of a parabola.
Given points:
- After 1 second, the ball is 15 feet high: (1, 15)
- After 4 seconds, the ball reaches its maximum height of 42 feet: (4, 42)
- After 7 seconds, it returns to a height of 15 feet: (7, 15)
We are given three key points on the parabolic flight path: the vertex \( (4, 42) \) and two other points \( (1, 15) \) and \( (7, 15) \).
The vertex form of a quadratic equation is:
[tex]\[ h(t) = a(t - h_{\text{shift}})^2 + k \][/tex]
where \( (h_{\text{shift}}, k) \) is the vertex of the parabola. From the problem, we know the vertex \((h_{\text{shift}}, k)\) is \( (4, 42) \).
Thus, we substitute \( h_{\text{shift}} = 4 \) and \( k = 42 \):
[tex]\[ h(t) = a(t - 4)^2 + 42 \][/tex]
Next, we need to find the coefficient \( a \) by plugging in one of the other points, say \( (1, 15) \).
Plugging in \( t = 1 \) and \( h(t) = 15 \):
[tex]\[ 15 = a(1 - 4)^2 + 42 \][/tex]
Simplify the equation:
[tex]\[ 15 = a(-3)^2 + 42 \][/tex]
[tex]\[ 15 = 9a + 42 \][/tex]
Subtract 42 from both sides to solve for \( a \):
[tex]\[ 15 - 42 = 9a \][/tex]
[tex]\[ -27 = 9a \][/tex]
[tex]\[ a = -3 \][/tex]
Thus, the quadratic function is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
To confirm, we verify with another point, \( (7, 15) \):
[tex]\[ h(7) = -3(7 - 4)^2 + 42 \][/tex]
[tex]\[ h(7) = -3(3)^2 + 42 \][/tex]
[tex]\[ h(7) = -3(9) + 42 \][/tex]
[tex]\[ h(7) = -27 + 42 \][/tex]
[tex]\[ h(7) = 15 \][/tex]
Both points satisfy the equation, confirming our solution is correct. Therefore, the equation modeling the height of the ball is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
Hence, the correct option is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
Given points:
- After 1 second, the ball is 15 feet high: (1, 15)
- After 4 seconds, the ball reaches its maximum height of 42 feet: (4, 42)
- After 7 seconds, it returns to a height of 15 feet: (7, 15)
We are given three key points on the parabolic flight path: the vertex \( (4, 42) \) and two other points \( (1, 15) \) and \( (7, 15) \).
The vertex form of a quadratic equation is:
[tex]\[ h(t) = a(t - h_{\text{shift}})^2 + k \][/tex]
where \( (h_{\text{shift}}, k) \) is the vertex of the parabola. From the problem, we know the vertex \((h_{\text{shift}}, k)\) is \( (4, 42) \).
Thus, we substitute \( h_{\text{shift}} = 4 \) and \( k = 42 \):
[tex]\[ h(t) = a(t - 4)^2 + 42 \][/tex]
Next, we need to find the coefficient \( a \) by plugging in one of the other points, say \( (1, 15) \).
Plugging in \( t = 1 \) and \( h(t) = 15 \):
[tex]\[ 15 = a(1 - 4)^2 + 42 \][/tex]
Simplify the equation:
[tex]\[ 15 = a(-3)^2 + 42 \][/tex]
[tex]\[ 15 = 9a + 42 \][/tex]
Subtract 42 from both sides to solve for \( a \):
[tex]\[ 15 - 42 = 9a \][/tex]
[tex]\[ -27 = 9a \][/tex]
[tex]\[ a = -3 \][/tex]
Thus, the quadratic function is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
To confirm, we verify with another point, \( (7, 15) \):
[tex]\[ h(7) = -3(7 - 4)^2 + 42 \][/tex]
[tex]\[ h(7) = -3(3)^2 + 42 \][/tex]
[tex]\[ h(7) = -3(9) + 42 \][/tex]
[tex]\[ h(7) = -27 + 42 \][/tex]
[tex]\[ h(7) = 15 \][/tex]
Both points satisfy the equation, confirming our solution is correct. Therefore, the equation modeling the height of the ball is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
Hence, the correct option is:
[tex]\[ h(t) = -3(t - 4)^2 + 42 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.