Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the vertex form of the quadratic function \( f(x) \) that has roots -2 and 6 and passes through the point (1, 15), we follow these steps:
1. Start with the factored form of the quadratic equation:
Since the quadratic function needs to have roots at -2 and 6, it can be written in factored form as:
[tex]\[ f(x) = a(x + 2)(x - 6) \][/tex]
Here, \(a\) is a constant that we need to determine.
2. Use the point (1, 15) to solve for \(a\):
The function passes through the point (1, 15), which means when \(x = 1\), \(f(x) = 15\). Substitute \(x = 1\) and \(f(x) = 15\) into the equation:
[tex]\[ 15 = a(1 + 2)(1 - 6) \][/tex]
Simplify inside the parentheses:
[tex]\[ 15 = a(3)(-5) \][/tex]
[tex]\[ 15 = a \cdot -15 \][/tex]
Solve for \(a\):
[tex]\[ 15 = -15a \][/tex]
[tex]\[ a = -1 \][/tex]
3. Write the quadratic function with the determined \(a\) value:
Now we know that \(a = -1\), so:
[tex]\[ f(x) = -1(x + 2)(x - 6) \][/tex]
4. Expand the function to convert it to standard form:
Expand the product:
[tex]\[ f(x) = -1(x^2 - 4x - 12) \][/tex]
Distribute \(-1\):
[tex]\[ f(x) = -x^2 + 4x + 12 \][/tex]
5. Convert the function to vertex form:
To convert \(f(x) = -x^2 + 4x + 12\) to vertex form, we complete the square.
- First, factor out \(-1\) from the quadratic and linear terms:
[tex]\[ f(x) = -(x^2 - 4x) + 12 \][/tex]
- To complete the square inside the parentheses, add and subtract \(\left(\frac{4}{2}\right)^2 = 4\):
[tex]\[ f(x) = -(x^2 - 4x + 4 - 4) + 12 \][/tex]
[tex]\[ f(x) = -((x^2 - 4x + 4) - 4) + 12 \][/tex]
[tex]\[ f(x) = -((x - 2)^2 - 4) + 12 \][/tex]
- Simplify by distributing the \(-1\):
[tex]\[ f(x) = -(x - 2)^2 + 4 + 12 \][/tex]
[tex]\[ f(x) = -(x - 2)^2 + 16 \][/tex]
So, the vertex form of the quadratic equation is:
[tex]\[ f(x) = -(x - 2)^2 + 16 \][/tex]
Therefore, the correct choice is:
[tex]\[ f(x) = -(x - 2)^2 + 16 \][/tex]
1. Start with the factored form of the quadratic equation:
Since the quadratic function needs to have roots at -2 and 6, it can be written in factored form as:
[tex]\[ f(x) = a(x + 2)(x - 6) \][/tex]
Here, \(a\) is a constant that we need to determine.
2. Use the point (1, 15) to solve for \(a\):
The function passes through the point (1, 15), which means when \(x = 1\), \(f(x) = 15\). Substitute \(x = 1\) and \(f(x) = 15\) into the equation:
[tex]\[ 15 = a(1 + 2)(1 - 6) \][/tex]
Simplify inside the parentheses:
[tex]\[ 15 = a(3)(-5) \][/tex]
[tex]\[ 15 = a \cdot -15 \][/tex]
Solve for \(a\):
[tex]\[ 15 = -15a \][/tex]
[tex]\[ a = -1 \][/tex]
3. Write the quadratic function with the determined \(a\) value:
Now we know that \(a = -1\), so:
[tex]\[ f(x) = -1(x + 2)(x - 6) \][/tex]
4. Expand the function to convert it to standard form:
Expand the product:
[tex]\[ f(x) = -1(x^2 - 4x - 12) \][/tex]
Distribute \(-1\):
[tex]\[ f(x) = -x^2 + 4x + 12 \][/tex]
5. Convert the function to vertex form:
To convert \(f(x) = -x^2 + 4x + 12\) to vertex form, we complete the square.
- First, factor out \(-1\) from the quadratic and linear terms:
[tex]\[ f(x) = -(x^2 - 4x) + 12 \][/tex]
- To complete the square inside the parentheses, add and subtract \(\left(\frac{4}{2}\right)^2 = 4\):
[tex]\[ f(x) = -(x^2 - 4x + 4 - 4) + 12 \][/tex]
[tex]\[ f(x) = -((x^2 - 4x + 4) - 4) + 12 \][/tex]
[tex]\[ f(x) = -((x - 2)^2 - 4) + 12 \][/tex]
- Simplify by distributing the \(-1\):
[tex]\[ f(x) = -(x - 2)^2 + 4 + 12 \][/tex]
[tex]\[ f(x) = -(x - 2)^2 + 16 \][/tex]
So, the vertex form of the quadratic equation is:
[tex]\[ f(x) = -(x - 2)^2 + 16 \][/tex]
Therefore, the correct choice is:
[tex]\[ f(x) = -(x - 2)^2 + 16 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.