Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the intervals of continuity for the function \( f(x) = \begin{cases}
-e^x & \text{if } x \neq 0 \\
\tan x & \text{if } x = 0
\end{cases} \), we need to analyze its behavior at \( x = 0 \) and elsewhere.
1. Continuity for \( x \neq 0 \):
- For \( x \neq 0 \), the function is defined as \( f(x) = -e^x \). The exponential function \( e^x \) is smooth and continuous everywhere, so \( -e^x \) is also continuous for all \( x \). Hence, \( f(x) \) is continuous on \( (-\infty, 0) \cup (0, \infty) \).
2. Continuity at \( x = 0 \):
- At \( x = 0 \), \( f(x) = \tan(0) \). Since \(\tan(0) = 0\), the function value at \( x = 0 \) is defined and equals \( 0 \).
- To determine the continuity at \( x = 0 \), we need to check the limit of \( f(x) \) as \( x \) approaches \( 0 \) from both sides and compare it with the function value at \( x = 0 \):
[tex]\[ \lim_{x \to 0^+} -e^x = -e^0 = -1 \][/tex]
[tex]\[ \lim_{x \to 0^-} -e^x = -e^0 = -1 \][/tex]
- The limit of \( f(x) \) as \( x \) approaches \( 0 \) from both the left and the right is \(-1\).
- However, the value of the function at \( x = 0 \) is \( f(0) = \tan(0) = 0 \).
Since the limit of \( f(x) \) as \( x \) approaches \( 0 \) does not equal the function value at \( x = 0 \), there is a discontinuity at \( x = 0 \).
3. Type of Discontinuity:
- The limit exists and is finite, but it does not equal the function's value at \( x = 0 \). This indicates that there is a removable discontinuity at \( x = 0 \).
Therefore, we summarize:
- The function \( f \) is continuous on \( (-\infty, 0) \cup (0, \infty) \).
- There is a removable discontinuity at \( x = 0 \).
Hence, the correct answer is:
- The function \( f \) is continuous on \( (-\infty, 0) \cup (0, \infty) \).
- There is a removable discontinuity at [tex]\( x = 0 \)[/tex].
-e^x & \text{if } x \neq 0 \\
\tan x & \text{if } x = 0
\end{cases} \), we need to analyze its behavior at \( x = 0 \) and elsewhere.
1. Continuity for \( x \neq 0 \):
- For \( x \neq 0 \), the function is defined as \( f(x) = -e^x \). The exponential function \( e^x \) is smooth and continuous everywhere, so \( -e^x \) is also continuous for all \( x \). Hence, \( f(x) \) is continuous on \( (-\infty, 0) \cup (0, \infty) \).
2. Continuity at \( x = 0 \):
- At \( x = 0 \), \( f(x) = \tan(0) \). Since \(\tan(0) = 0\), the function value at \( x = 0 \) is defined and equals \( 0 \).
- To determine the continuity at \( x = 0 \), we need to check the limit of \( f(x) \) as \( x \) approaches \( 0 \) from both sides and compare it with the function value at \( x = 0 \):
[tex]\[ \lim_{x \to 0^+} -e^x = -e^0 = -1 \][/tex]
[tex]\[ \lim_{x \to 0^-} -e^x = -e^0 = -1 \][/tex]
- The limit of \( f(x) \) as \( x \) approaches \( 0 \) from both the left and the right is \(-1\).
- However, the value of the function at \( x = 0 \) is \( f(0) = \tan(0) = 0 \).
Since the limit of \( f(x) \) as \( x \) approaches \( 0 \) does not equal the function value at \( x = 0 \), there is a discontinuity at \( x = 0 \).
3. Type of Discontinuity:
- The limit exists and is finite, but it does not equal the function's value at \( x = 0 \). This indicates that there is a removable discontinuity at \( x = 0 \).
Therefore, we summarize:
- The function \( f \) is continuous on \( (-\infty, 0) \cup (0, \infty) \).
- There is a removable discontinuity at \( x = 0 \).
Hence, the correct answer is:
- The function \( f \) is continuous on \( (-\infty, 0) \cup (0, \infty) \).
- There is a removable discontinuity at [tex]\( x = 0 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.