Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Given the data points \((-2, 7), (-1, 4), (0, 3), (1, 4), (2, 7)\), we are to determine the quadratic function \(C(t)\) that fits these points.
### Step-by-Step Solution:
1. Identify the general form of a quadratic function:
[tex]\[ C(t) = at^2 + bt + c \][/tex]
2. Find the coefficients \(a\), \(b\), and \(c\):
- Using the given data points, we can fit a quadratic polynomial \(C(t) = at^2 + bt + c\).
3. Determine the coefficients using curve fitting (in practice, this can be solved through methods like the least squares method, but we use the already provided result):
- The coefficients \(a\), \(b\), and \(c\) for the quadratic function best fitting the given data points are:
[tex]\[ a = 1.0000000000000002, \quad b = 0.0, \quad c = 3.0 \][/tex]
4. Form the equation:
- Substitute \(a\), \(b\), and \(c\) into the general quadratic form:
[tex]\[ C(t) = 1.0000000000000002 t^2 + 0.0 t + 3.0 \][/tex]
- Simplify the equation:
[tex]\[ C(t) = t^2 + 3 \][/tex]
5. Verify the function with the given options:
- Among the provided options, we need to match the quadratic function we derived:
[tex]\[ \text{Option 1: } C(t) = -(t-3)^2 \][/tex]
[tex]\[ \text{Option 2: } C(t) = (t-3)^2 \][/tex]
[tex]\[ \text{Option 3: } C(t) = -t^2 + 3 \][/tex]
[tex]\[ \text{Option 4: } C(t) = t^2 + 3 \][/tex]
- The derived function \(C(t) = t^2 + 3\) matches Option 4.
### Conclusion:
The equation of \(C(t)\) that fits the given data points is:
[tex]\[ C(t) = t^2 + 3 \][/tex]
### Step-by-Step Solution:
1. Identify the general form of a quadratic function:
[tex]\[ C(t) = at^2 + bt + c \][/tex]
2. Find the coefficients \(a\), \(b\), and \(c\):
- Using the given data points, we can fit a quadratic polynomial \(C(t) = at^2 + bt + c\).
3. Determine the coefficients using curve fitting (in practice, this can be solved through methods like the least squares method, but we use the already provided result):
- The coefficients \(a\), \(b\), and \(c\) for the quadratic function best fitting the given data points are:
[tex]\[ a = 1.0000000000000002, \quad b = 0.0, \quad c = 3.0 \][/tex]
4. Form the equation:
- Substitute \(a\), \(b\), and \(c\) into the general quadratic form:
[tex]\[ C(t) = 1.0000000000000002 t^2 + 0.0 t + 3.0 \][/tex]
- Simplify the equation:
[tex]\[ C(t) = t^2 + 3 \][/tex]
5. Verify the function with the given options:
- Among the provided options, we need to match the quadratic function we derived:
[tex]\[ \text{Option 1: } C(t) = -(t-3)^2 \][/tex]
[tex]\[ \text{Option 2: } C(t) = (t-3)^2 \][/tex]
[tex]\[ \text{Option 3: } C(t) = -t^2 + 3 \][/tex]
[tex]\[ \text{Option 4: } C(t) = t^2 + 3 \][/tex]
- The derived function \(C(t) = t^2 + 3\) matches Option 4.
### Conclusion:
The equation of \(C(t)\) that fits the given data points is:
[tex]\[ C(t) = t^2 + 3 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.