Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's find the height of the building step-by-step based on the given information:
1. Understanding the problem:
- A student drops a stone from the top of the building.
- The student starts a clock at the moment the stone is dropped.
- The student stops the clock as soon as the stone hits the ground.
- We need to determine the height (\(h\)) of the building using the relation \( h = \frac{1}{2} g t^2 \).
2. Given data:
- Acceleration due to gravity, \( g = 9.8 \, \text{m/s}^2 \)
- Time taken for the stone to hit the ground, \( t = 3 \, \text{seconds} \)
3. Using the relation \( h = \frac{1}{2} g t^2 \):
- Here, \( g = 9.8 \, \text{m/s}^2 \)
- \( t = 3 \, \text{seconds} \)
4. Substitute the values into the formula:
[tex]\[ h = \frac{1}{2} \times 9.8 \, \text{m/s}^2 \times (3 \, \text{seconds})^2 \][/tex]
5. Calculate the height:
- First, calculate \( t^2 \):
[tex]\[ t^2 = (3 \, \text{seconds})^2 = 9 \, \text{seconds}^2 \][/tex]
- Next, multiply \( g \) by this value and then by \(\frac{1}{2}\):
[tex]\[ h = \frac{1}{2} \times 9.8 \, \text{m/s}^2 \times 9 \, \text{seconds}^2 \][/tex]
[tex]\[ h = \frac{1}{2} \times 88.2 \, \text{m} \][/tex]
[tex]\[ h = 44.1 \, \text{m} \][/tex]
6. Final Answer:
- The height of the building is [tex]\( 44.1 \, \text{m} \)[/tex].
1. Understanding the problem:
- A student drops a stone from the top of the building.
- The student starts a clock at the moment the stone is dropped.
- The student stops the clock as soon as the stone hits the ground.
- We need to determine the height (\(h\)) of the building using the relation \( h = \frac{1}{2} g t^2 \).
2. Given data:
- Acceleration due to gravity, \( g = 9.8 \, \text{m/s}^2 \)
- Time taken for the stone to hit the ground, \( t = 3 \, \text{seconds} \)
3. Using the relation \( h = \frac{1}{2} g t^2 \):
- Here, \( g = 9.8 \, \text{m/s}^2 \)
- \( t = 3 \, \text{seconds} \)
4. Substitute the values into the formula:
[tex]\[ h = \frac{1}{2} \times 9.8 \, \text{m/s}^2 \times (3 \, \text{seconds})^2 \][/tex]
5. Calculate the height:
- First, calculate \( t^2 \):
[tex]\[ t^2 = (3 \, \text{seconds})^2 = 9 \, \text{seconds}^2 \][/tex]
- Next, multiply \( g \) by this value and then by \(\frac{1}{2}\):
[tex]\[ h = \frac{1}{2} \times 9.8 \, \text{m/s}^2 \times 9 \, \text{seconds}^2 \][/tex]
[tex]\[ h = \frac{1}{2} \times 88.2 \, \text{m} \][/tex]
[tex]\[ h = 44.1 \, \text{m} \][/tex]
6. Final Answer:
- The height of the building is [tex]\( 44.1 \, \text{m} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.