Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's find the height of the building step-by-step based on the given information:
1. Understanding the problem:
- A student drops a stone from the top of the building.
- The student starts a clock at the moment the stone is dropped.
- The student stops the clock as soon as the stone hits the ground.
- We need to determine the height (\(h\)) of the building using the relation \( h = \frac{1}{2} g t^2 \).
2. Given data:
- Acceleration due to gravity, \( g = 9.8 \, \text{m/s}^2 \)
- Time taken for the stone to hit the ground, \( t = 3 \, \text{seconds} \)
3. Using the relation \( h = \frac{1}{2} g t^2 \):
- Here, \( g = 9.8 \, \text{m/s}^2 \)
- \( t = 3 \, \text{seconds} \)
4. Substitute the values into the formula:
[tex]\[ h = \frac{1}{2} \times 9.8 \, \text{m/s}^2 \times (3 \, \text{seconds})^2 \][/tex]
5. Calculate the height:
- First, calculate \( t^2 \):
[tex]\[ t^2 = (3 \, \text{seconds})^2 = 9 \, \text{seconds}^2 \][/tex]
- Next, multiply \( g \) by this value and then by \(\frac{1}{2}\):
[tex]\[ h = \frac{1}{2} \times 9.8 \, \text{m/s}^2 \times 9 \, \text{seconds}^2 \][/tex]
[tex]\[ h = \frac{1}{2} \times 88.2 \, \text{m} \][/tex]
[tex]\[ h = 44.1 \, \text{m} \][/tex]
6. Final Answer:
- The height of the building is [tex]\( 44.1 \, \text{m} \)[/tex].
1. Understanding the problem:
- A student drops a stone from the top of the building.
- The student starts a clock at the moment the stone is dropped.
- The student stops the clock as soon as the stone hits the ground.
- We need to determine the height (\(h\)) of the building using the relation \( h = \frac{1}{2} g t^2 \).
2. Given data:
- Acceleration due to gravity, \( g = 9.8 \, \text{m/s}^2 \)
- Time taken for the stone to hit the ground, \( t = 3 \, \text{seconds} \)
3. Using the relation \( h = \frac{1}{2} g t^2 \):
- Here, \( g = 9.8 \, \text{m/s}^2 \)
- \( t = 3 \, \text{seconds} \)
4. Substitute the values into the formula:
[tex]\[ h = \frac{1}{2} \times 9.8 \, \text{m/s}^2 \times (3 \, \text{seconds})^2 \][/tex]
5. Calculate the height:
- First, calculate \( t^2 \):
[tex]\[ t^2 = (3 \, \text{seconds})^2 = 9 \, \text{seconds}^2 \][/tex]
- Next, multiply \( g \) by this value and then by \(\frac{1}{2}\):
[tex]\[ h = \frac{1}{2} \times 9.8 \, \text{m/s}^2 \times 9 \, \text{seconds}^2 \][/tex]
[tex]\[ h = \frac{1}{2} \times 88.2 \, \text{m} \][/tex]
[tex]\[ h = 44.1 \, \text{m} \][/tex]
6. Final Answer:
- The height of the building is [tex]\( 44.1 \, \text{m} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.