Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the probability \( P(A^C) \), where \( A \) is the event that a place is a city, we first need to identify all the places that are not cities and then calculate their probability.
Let's start by examining the provided table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Place & Is a city & Is in North America \\ \hline Rome & [tex]$\times$[/tex] & \\
\hline
Tokyo & [tex]$\checkmark$[/tex] & \\
\hline
Houston & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Peru & [tex]$\times$[/tex] & \\
\hline
Miami & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Toronto & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Canada & [tex]$\times$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
\end{tabular}
\][/tex]
We are given that \( A \) represents the event that a place is a city. Therefore, \( A^C \) represents the event that a place is not a city.
From the table:
- The total number of places is \( 7 \).
- The places that are not cities are:
- Rome
- Peru
- Canada
There are \( 3 \) places that are not cities (Rome, Peru, and Canada).
The probability \( P(A^C) \) is calculated as:
[tex]\[ P(A^C) = \frac{\text{Number of places that are not cities}}{\text{Total number of places}} = \frac{3}{7} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\frac{3}{7}} \][/tex]
Therefore, the correct answer is:
B. [tex]\( \frac{3}{7} \)[/tex]
Let's start by examining the provided table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Place & Is a city & Is in North America \\ \hline Rome & [tex]$\times$[/tex] & \\
\hline
Tokyo & [tex]$\checkmark$[/tex] & \\
\hline
Houston & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Peru & [tex]$\times$[/tex] & \\
\hline
Miami & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Toronto & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Canada & [tex]$\times$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
\end{tabular}
\][/tex]
We are given that \( A \) represents the event that a place is a city. Therefore, \( A^C \) represents the event that a place is not a city.
From the table:
- The total number of places is \( 7 \).
- The places that are not cities are:
- Rome
- Peru
- Canada
There are \( 3 \) places that are not cities (Rome, Peru, and Canada).
The probability \( P(A^C) \) is calculated as:
[tex]\[ P(A^C) = \frac{\text{Number of places that are not cities}}{\text{Total number of places}} = \frac{3}{7} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\frac{3}{7}} \][/tex]
Therefore, the correct answer is:
B. [tex]\( \frac{3}{7} \)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.