Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given functions is always increasing over its entire domain, we need to examine their derivatives. A function is increasing where its derivative is positive.
Let’s analyze each function:
1. Function \( f(x) = x^2 \)
- Derivative: \( f'(x) = 2x \)
- For \( f'(x) > 0 \), we need \( 2x > 0 \)
- This is true when \( x > 0 \)
- Hence, \( f(x) = x^2 \) is not increasing over its entire domain (it only increases for \( x > 0 \), and decreases for \( x < 0 \)).
2. Function \( f(x) = x^3 - 4x \)
- Derivative: \( f'(x) = 3x^2 - 4 \)
- For \( f'(x) > 0 \), we need \( 3x^2 - 4 > 0 \)
- \( 3x^2 > 4 \)
- \( x^2 > \frac{4}{3} \)
- \( x > \sqrt{\frac{4}{3}} \) or \( x < -\sqrt{\frac{4}{3}} \)
- Hence, \( f(x) = x^3 - 4x \) is not increasing over its entire domain (it increases when \( |x| > \sqrt{\frac{4}{3}} \) and decreases when \( |x| < \sqrt{\frac{4}{3}} \)).
3. Function \( f(x) = -2x + 5 \)
- Derivative: \( f'(x) = -2 \)
- \( f'(x) = -2 \) is always less than 0
- Hence, \( f(x) = -2x + 5 \) is always decreasing.
4. Function \( f(x) = \sqrt{x + 2} \)
- Derivative: \( f'(x) = \frac{1}{2\sqrt{x + 2}} \)
- The derivative, \( \frac{1}{2\sqrt{x + 2}} \), is always positive for all \( x \geq -2 \)
- This is because the square root of a number is always positive, ensuring the expression under the division is positive.
- Hence, \( f(x) = \sqrt{x+2} \) is increasing over its entire domain \( [ -2, ∞ ) \).
Conclusion: Among the given functions, the function [tex]\( f(x) = \sqrt{x+2} \)[/tex] is always increasing over its entire domain.
Let’s analyze each function:
1. Function \( f(x) = x^2 \)
- Derivative: \( f'(x) = 2x \)
- For \( f'(x) > 0 \), we need \( 2x > 0 \)
- This is true when \( x > 0 \)
- Hence, \( f(x) = x^2 \) is not increasing over its entire domain (it only increases for \( x > 0 \), and decreases for \( x < 0 \)).
2. Function \( f(x) = x^3 - 4x \)
- Derivative: \( f'(x) = 3x^2 - 4 \)
- For \( f'(x) > 0 \), we need \( 3x^2 - 4 > 0 \)
- \( 3x^2 > 4 \)
- \( x^2 > \frac{4}{3} \)
- \( x > \sqrt{\frac{4}{3}} \) or \( x < -\sqrt{\frac{4}{3}} \)
- Hence, \( f(x) = x^3 - 4x \) is not increasing over its entire domain (it increases when \( |x| > \sqrt{\frac{4}{3}} \) and decreases when \( |x| < \sqrt{\frac{4}{3}} \)).
3. Function \( f(x) = -2x + 5 \)
- Derivative: \( f'(x) = -2 \)
- \( f'(x) = -2 \) is always less than 0
- Hence, \( f(x) = -2x + 5 \) is always decreasing.
4. Function \( f(x) = \sqrt{x + 2} \)
- Derivative: \( f'(x) = \frac{1}{2\sqrt{x + 2}} \)
- The derivative, \( \frac{1}{2\sqrt{x + 2}} \), is always positive for all \( x \geq -2 \)
- This is because the square root of a number is always positive, ensuring the expression under the division is positive.
- Hence, \( f(x) = \sqrt{x+2} \) is increasing over its entire domain \( [ -2, ∞ ) \).
Conclusion: Among the given functions, the function [tex]\( f(x) = \sqrt{x+2} \)[/tex] is always increasing over its entire domain.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.