Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Which of the following functions increases over its entire domain?

A. [tex]f(x)=x^2[/tex]
B. [tex]f(x)=x^3-4x[/tex]
C. [tex]f(x)=-2x+5[/tex]
D. [tex]f(x)=\sqrt{x+2}[/tex]


Sagot :

To determine which of the given functions is always increasing over its entire domain, we need to examine their derivatives. A function is increasing where its derivative is positive.

Let’s analyze each function:

1. Function \( f(x) = x^2 \)
- Derivative: \( f'(x) = 2x \)
- For \( f'(x) > 0 \), we need \( 2x > 0 \)
- This is true when \( x > 0 \)
- Hence, \( f(x) = x^2 \) is not increasing over its entire domain (it only increases for \( x > 0 \), and decreases for \( x < 0 \)).

2. Function \( f(x) = x^3 - 4x \)
- Derivative: \( f'(x) = 3x^2 - 4 \)
- For \( f'(x) > 0 \), we need \( 3x^2 - 4 > 0 \)
- \( 3x^2 > 4 \)
- \( x^2 > \frac{4}{3} \)
- \( x > \sqrt{\frac{4}{3}} \) or \( x < -\sqrt{\frac{4}{3}} \)
- Hence, \( f(x) = x^3 - 4x \) is not increasing over its entire domain (it increases when \( |x| > \sqrt{\frac{4}{3}} \) and decreases when \( |x| < \sqrt{\frac{4}{3}} \)).

3. Function \( f(x) = -2x + 5 \)
- Derivative: \( f'(x) = -2 \)
- \( f'(x) = -2 \) is always less than 0
- Hence, \( f(x) = -2x + 5 \) is always decreasing.

4. Function \( f(x) = \sqrt{x + 2} \)
- Derivative: \( f'(x) = \frac{1}{2\sqrt{x + 2}} \)
- The derivative, \( \frac{1}{2\sqrt{x + 2}} \), is always positive for all \( x \geq -2 \)
- This is because the square root of a number is always positive, ensuring the expression under the division is positive.
- Hence, \( f(x) = \sqrt{x+2} \) is increasing over its entire domain \( [ -2, ∞ ) \).

Conclusion: Among the given functions, the function [tex]\( f(x) = \sqrt{x+2} \)[/tex] is always increasing over its entire domain.