At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the slope of the line of best fit, we need to perform a linear regression analysis on the given temperature (\( x \)) and ice cream sales data (\( y \)). Here are the steps involved in calculating the slope:
1. Calculate the means of \( x \) and \( y \):
- Mean of temperature (\( \bar{x} \)):
[tex]\[ \bar{x} = 70.65 \][/tex]
- Mean of ice cream sales (\( \bar{y} \)):
[tex]\[ \bar{y} = 128.0 \][/tex]
2. Calculate the intermediate sums:
- Sum of the products of corresponding \( x \) and \( y \) values (\( \sum xy \)):
[tex]\[ \sum xy = 91451.9 \][/tex]
- Sum of the \( x \) values (\( \sum x \)):
[tex]\[ \sum x = 706.5 \][/tex]
- Sum of the \( y \) values (\( \sum y \)):
[tex]\[ \sum y = 1280 \][/tex]
- Sum of the squares of the \( x \) values (\( \sum x^2 \)):
[tex]\[ \sum x^2 = 50626.53 \][/tex]
3. Calculate the slope:
- \( n \) is the number of data points, which is 10 in this case.
- The slope (\( m \)) of the line of best fit is given by the formula:
[tex]\[ m = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2} \][/tex]
Plugging in the values, we get:
[tex]\[ m = \frac{10 \cdot 91451.9 - (706.5 \cdot 1280)}{10 \cdot 50626.53 - (706.5)^2} \][/tex]
Simplifying this, we find:
[tex]\[ m = 1.4 \][/tex]
Therefore, the slope of the line of best fit, rounded to one decimal place, is [tex]\( \boxed{1.4} \)[/tex].
1. Calculate the means of \( x \) and \( y \):
- Mean of temperature (\( \bar{x} \)):
[tex]\[ \bar{x} = 70.65 \][/tex]
- Mean of ice cream sales (\( \bar{y} \)):
[tex]\[ \bar{y} = 128.0 \][/tex]
2. Calculate the intermediate sums:
- Sum of the products of corresponding \( x \) and \( y \) values (\( \sum xy \)):
[tex]\[ \sum xy = 91451.9 \][/tex]
- Sum of the \( x \) values (\( \sum x \)):
[tex]\[ \sum x = 706.5 \][/tex]
- Sum of the \( y \) values (\( \sum y \)):
[tex]\[ \sum y = 1280 \][/tex]
- Sum of the squares of the \( x \) values (\( \sum x^2 \)):
[tex]\[ \sum x^2 = 50626.53 \][/tex]
3. Calculate the slope:
- \( n \) is the number of data points, which is 10 in this case.
- The slope (\( m \)) of the line of best fit is given by the formula:
[tex]\[ m = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2} \][/tex]
Plugging in the values, we get:
[tex]\[ m = \frac{10 \cdot 91451.9 - (706.5 \cdot 1280)}{10 \cdot 50626.53 - (706.5)^2} \][/tex]
Simplifying this, we find:
[tex]\[ m = 1.4 \][/tex]
Therefore, the slope of the line of best fit, rounded to one decimal place, is [tex]\( \boxed{1.4} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.