Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve this problem step-by-step in detail:
1. Starting with the given quadratic function:
[tex]\[ f(x) = -4x^2 + 24x - 29 \][/tex]
2. We aim to write this equation in vertex form, which is:
[tex]\[ f(x) = a(x-h)^2 + k \][/tex]
3. First, we need to factor out the coefficient of \(x^2\) from the first two terms:
[tex]\[ f(x) = -4(x^2 - \frac{24}{-4}x) - 29 \][/tex]
[tex]\[ f(x) = -4(x^2 - 6x) - 29 \][/tex]
4. Next, we complete the square inside the parentheses:
To complete the square:
- Take half the coefficient of \(x\), which is \(-6\), and square it.
Half of \(-6\) is \(-3\), and \((-3)^2\) is \(9\).
5. Add and subtract this square inside the parentheses:
[tex]\[ f(x) = -4(x^2 - 6x + 9 - 9) - 29 \][/tex]
[tex]\[ f(x) = -4((x - 3)^2 - 9) - 29 \][/tex]
6. Distribute the \(-4\) through the parentheses:
[tex]\[ f(x) = -4(x - 3)^2 + 4 \cdot 9 - 29 \][/tex]
[tex]\[ f(x) = -4(x - 3)^2 + 36 - 29 \][/tex]
[tex]\[ f(x) = -4(x - 3)^2 + 7 \][/tex]
7. Now, we have the function in vertex form:
[tex]\[ f(x) = -4(x - 3)^2 + 7 \][/tex]
8. The vertex of this function \((h, k)\) gives the maximum (or minimum) height of the parabolic path. In this case, since the coefficient of \((x - h)^2\) is negative (-4), the parabola opens downward, indicating a maximum point.
The vertex is \((3, 7)\), so the maximum height of the water is given by the \(k\) value, which is \(7\) feet.
Therefore, the correct answer is:
[tex]\[ -4(x - 3)^2 + 7 \][/tex]
The maximum height of the water is [tex]\(7\)[/tex] feet.
1. Starting with the given quadratic function:
[tex]\[ f(x) = -4x^2 + 24x - 29 \][/tex]
2. We aim to write this equation in vertex form, which is:
[tex]\[ f(x) = a(x-h)^2 + k \][/tex]
3. First, we need to factor out the coefficient of \(x^2\) from the first two terms:
[tex]\[ f(x) = -4(x^2 - \frac{24}{-4}x) - 29 \][/tex]
[tex]\[ f(x) = -4(x^2 - 6x) - 29 \][/tex]
4. Next, we complete the square inside the parentheses:
To complete the square:
- Take half the coefficient of \(x\), which is \(-6\), and square it.
Half of \(-6\) is \(-3\), and \((-3)^2\) is \(9\).
5. Add and subtract this square inside the parentheses:
[tex]\[ f(x) = -4(x^2 - 6x + 9 - 9) - 29 \][/tex]
[tex]\[ f(x) = -4((x - 3)^2 - 9) - 29 \][/tex]
6. Distribute the \(-4\) through the parentheses:
[tex]\[ f(x) = -4(x - 3)^2 + 4 \cdot 9 - 29 \][/tex]
[tex]\[ f(x) = -4(x - 3)^2 + 36 - 29 \][/tex]
[tex]\[ f(x) = -4(x - 3)^2 + 7 \][/tex]
7. Now, we have the function in vertex form:
[tex]\[ f(x) = -4(x - 3)^2 + 7 \][/tex]
8. The vertex of this function \((h, k)\) gives the maximum (or minimum) height of the parabolic path. In this case, since the coefficient of \((x - h)^2\) is negative (-4), the parabola opens downward, indicating a maximum point.
The vertex is \((3, 7)\), so the maximum height of the water is given by the \(k\) value, which is \(7\) feet.
Therefore, the correct answer is:
[tex]\[ -4(x - 3)^2 + 7 \][/tex]
The maximum height of the water is [tex]\(7\)[/tex] feet.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.