Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve this step-by-step.
### Step 1: Determine the Minimum Value of Function 1
Function 1 is given by:
[tex]\[ f(x) = 2x^2 - 8x + 1 \][/tex]
A quadratic function of the form \( ax^2 + bx + c \) has its vertex at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
For \( f(x) = 2x^2 - 8x + 1 \):
- \( a = 2 \)
- \( b = -8 \)
- \( c = 1 \)
The x-coordinate of the vertex is:
[tex]\[ x = -\frac{-8}{2 \cdot 2} = \frac{8}{4} = 2 \][/tex]
The y-coordinate (or the minimum value) of the vertex is found by substituting \( x = 2 \) into \( f(x) \):
[tex]\[ f(2) = 2(2)^2 - 8(2) + 1 = 2(4) - 16 + 1 = 8 - 16 + 1 = -7 \][/tex]
So, the minimum value of Function 1 is \( -7 \) at \( (2, -7) \).
### Step 2: Determine the Minimum Value of Function 2
For Function 2, we are given specific points:
[tex]\[ \begin{array}{|c|c|} \hline x & g(x) \\ \hline -2 & 2 \\ \hline -1 & -3 \\ \hline 0 & 2 \\ \hline 1 & 17 \\ \hline \end{array} \][/tex]
We need to find the minimum \( g(x) \) among these points. Checking the values:
- \( g(-2) = 2 \)
- \( g(-1) = -3 \)
- \( g(0) = 2 \)
- \( g(1) = 17 \)
The minimum value of \( g(x) \) is \( -3 \) at \( (-1, -3) \).
### Step 3: Compare the Minimum Values of Function 1 and Function 2
- The minimum value of Function 1 is \( -7 \) at \( (2, -7) \).
- The minimum value of Function 2 is \( -3 \) at \( (-1, -3) \).
Comparing \( -7 \) and \( -3 \):
[tex]\[ -7 < -3 \][/tex]
Thus, the least minimum value is \( -7 \), and it occurs at coordinates \( (2, -7) \).
### Conclusion
Function 1 has the least minimum value. The least minimum value is [tex]\( -7 \)[/tex] and its coordinates are [tex]\( (2, -7) \)[/tex].
### Step 1: Determine the Minimum Value of Function 1
Function 1 is given by:
[tex]\[ f(x) = 2x^2 - 8x + 1 \][/tex]
A quadratic function of the form \( ax^2 + bx + c \) has its vertex at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
For \( f(x) = 2x^2 - 8x + 1 \):
- \( a = 2 \)
- \( b = -8 \)
- \( c = 1 \)
The x-coordinate of the vertex is:
[tex]\[ x = -\frac{-8}{2 \cdot 2} = \frac{8}{4} = 2 \][/tex]
The y-coordinate (or the minimum value) of the vertex is found by substituting \( x = 2 \) into \( f(x) \):
[tex]\[ f(2) = 2(2)^2 - 8(2) + 1 = 2(4) - 16 + 1 = 8 - 16 + 1 = -7 \][/tex]
So, the minimum value of Function 1 is \( -7 \) at \( (2, -7) \).
### Step 2: Determine the Minimum Value of Function 2
For Function 2, we are given specific points:
[tex]\[ \begin{array}{|c|c|} \hline x & g(x) \\ \hline -2 & 2 \\ \hline -1 & -3 \\ \hline 0 & 2 \\ \hline 1 & 17 \\ \hline \end{array} \][/tex]
We need to find the minimum \( g(x) \) among these points. Checking the values:
- \( g(-2) = 2 \)
- \( g(-1) = -3 \)
- \( g(0) = 2 \)
- \( g(1) = 17 \)
The minimum value of \( g(x) \) is \( -3 \) at \( (-1, -3) \).
### Step 3: Compare the Minimum Values of Function 1 and Function 2
- The minimum value of Function 1 is \( -7 \) at \( (2, -7) \).
- The minimum value of Function 2 is \( -3 \) at \( (-1, -3) \).
Comparing \( -7 \) and \( -3 \):
[tex]\[ -7 < -3 \][/tex]
Thus, the least minimum value is \( -7 \), and it occurs at coordinates \( (2, -7) \).
### Conclusion
Function 1 has the least minimum value. The least minimum value is [tex]\( -7 \)[/tex] and its coordinates are [tex]\( (2, -7) \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.