Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve this step-by-step.
### Step 1: Determine the Minimum Value of Function 1
Function 1 is given by:
[tex]\[ f(x) = 2x^2 - 8x + 1 \][/tex]
A quadratic function of the form \( ax^2 + bx + c \) has its vertex at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
For \( f(x) = 2x^2 - 8x + 1 \):
- \( a = 2 \)
- \( b = -8 \)
- \( c = 1 \)
The x-coordinate of the vertex is:
[tex]\[ x = -\frac{-8}{2 \cdot 2} = \frac{8}{4} = 2 \][/tex]
The y-coordinate (or the minimum value) of the vertex is found by substituting \( x = 2 \) into \( f(x) \):
[tex]\[ f(2) = 2(2)^2 - 8(2) + 1 = 2(4) - 16 + 1 = 8 - 16 + 1 = -7 \][/tex]
So, the minimum value of Function 1 is \( -7 \) at \( (2, -7) \).
### Step 2: Determine the Minimum Value of Function 2
For Function 2, we are given specific points:
[tex]\[ \begin{array}{|c|c|} \hline x & g(x) \\ \hline -2 & 2 \\ \hline -1 & -3 \\ \hline 0 & 2 \\ \hline 1 & 17 \\ \hline \end{array} \][/tex]
We need to find the minimum \( g(x) \) among these points. Checking the values:
- \( g(-2) = 2 \)
- \( g(-1) = -3 \)
- \( g(0) = 2 \)
- \( g(1) = 17 \)
The minimum value of \( g(x) \) is \( -3 \) at \( (-1, -3) \).
### Step 3: Compare the Minimum Values of Function 1 and Function 2
- The minimum value of Function 1 is \( -7 \) at \( (2, -7) \).
- The minimum value of Function 2 is \( -3 \) at \( (-1, -3) \).
Comparing \( -7 \) and \( -3 \):
[tex]\[ -7 < -3 \][/tex]
Thus, the least minimum value is \( -7 \), and it occurs at coordinates \( (2, -7) \).
### Conclusion
Function 1 has the least minimum value. The least minimum value is [tex]\( -7 \)[/tex] and its coordinates are [tex]\( (2, -7) \)[/tex].
### Step 1: Determine the Minimum Value of Function 1
Function 1 is given by:
[tex]\[ f(x) = 2x^2 - 8x + 1 \][/tex]
A quadratic function of the form \( ax^2 + bx + c \) has its vertex at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
For \( f(x) = 2x^2 - 8x + 1 \):
- \( a = 2 \)
- \( b = -8 \)
- \( c = 1 \)
The x-coordinate of the vertex is:
[tex]\[ x = -\frac{-8}{2 \cdot 2} = \frac{8}{4} = 2 \][/tex]
The y-coordinate (or the minimum value) of the vertex is found by substituting \( x = 2 \) into \( f(x) \):
[tex]\[ f(2) = 2(2)^2 - 8(2) + 1 = 2(4) - 16 + 1 = 8 - 16 + 1 = -7 \][/tex]
So, the minimum value of Function 1 is \( -7 \) at \( (2, -7) \).
### Step 2: Determine the Minimum Value of Function 2
For Function 2, we are given specific points:
[tex]\[ \begin{array}{|c|c|} \hline x & g(x) \\ \hline -2 & 2 \\ \hline -1 & -3 \\ \hline 0 & 2 \\ \hline 1 & 17 \\ \hline \end{array} \][/tex]
We need to find the minimum \( g(x) \) among these points. Checking the values:
- \( g(-2) = 2 \)
- \( g(-1) = -3 \)
- \( g(0) = 2 \)
- \( g(1) = 17 \)
The minimum value of \( g(x) \) is \( -3 \) at \( (-1, -3) \).
### Step 3: Compare the Minimum Values of Function 1 and Function 2
- The minimum value of Function 1 is \( -7 \) at \( (2, -7) \).
- The minimum value of Function 2 is \( -3 \) at \( (-1, -3) \).
Comparing \( -7 \) and \( -3 \):
[tex]\[ -7 < -3 \][/tex]
Thus, the least minimum value is \( -7 \), and it occurs at coordinates \( (2, -7) \).
### Conclusion
Function 1 has the least minimum value. The least minimum value is [tex]\( -7 \)[/tex] and its coordinates are [tex]\( (2, -7) \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.