Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the valid expression for the possible values of \( n \) for the sides of a triangle, we can use the triangle inequality theorem. The triangle inequality theorem states that for any triangle with side lengths \(a\), \(b\), and \(c\):
1. \( a + b > c \)
2. \( a + c > b \)
3. \( b + c > a \)
In this problem, the sides of the triangle are given as:
[tex]\[ a = 2x + 2, \quad b = x + 3, \quad \text{and} \quad c = n \][/tex]
Applying the triangle inequality theorem, we get the following three inequalities:
1. \( (2x + 2) + (x + 3) > n \)
2. \( (2x + 2) + n > x + 3 \)
3. \( (x + 3) + n > 2x + 2 \)
We will solve each inequality step-by-step:
### Inequality 1: \( (2x + 2) + (x + 3) > n \)
[tex]\[ 2x + 2 + x + 3 > n \][/tex]
[tex]\[ 3x + 5 > n \][/tex]
or equivalently,
[tex]\[ n < 3x + 5 \][/tex]
### Inequality 2: \( (2x + 2) + n > x + 3 \)
[tex]\[ 2x + 2 + n > x + 3 \][/tex]
[tex]\[ 2x + 2 + n - x > 3 \][/tex]
[tex]\[ x + 2 + n > 3 \][/tex]
[tex]\[ n > 3 - x - 2 \][/tex]
[tex]\[ n > x - 1 \][/tex]
### Inequality 3: \( (x + 3) + n > 2x + 2 \)
[tex]\[ x + 3 + n > 2x + 2 \][/tex]
[tex]\[ n > 2x + 2 - x - 3 \][/tex]
[tex]\[ n > x - 1 \][/tex]
Even though we derived the same inequality for the second part, it reconfirms our previous finding.
Thus, combining both inequalities from above, we get:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
This means that \( n \) must be greater than \( x - 1 \) and less than \( 3x + 5 \) to satisfy all three conditions of the triangle inequality.
The correct solution is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{x - 1 < n < 3x + 5} \][/tex]
1. \( a + b > c \)
2. \( a + c > b \)
3. \( b + c > a \)
In this problem, the sides of the triangle are given as:
[tex]\[ a = 2x + 2, \quad b = x + 3, \quad \text{and} \quad c = n \][/tex]
Applying the triangle inequality theorem, we get the following three inequalities:
1. \( (2x + 2) + (x + 3) > n \)
2. \( (2x + 2) + n > x + 3 \)
3. \( (x + 3) + n > 2x + 2 \)
We will solve each inequality step-by-step:
### Inequality 1: \( (2x + 2) + (x + 3) > n \)
[tex]\[ 2x + 2 + x + 3 > n \][/tex]
[tex]\[ 3x + 5 > n \][/tex]
or equivalently,
[tex]\[ n < 3x + 5 \][/tex]
### Inequality 2: \( (2x + 2) + n > x + 3 \)
[tex]\[ 2x + 2 + n > x + 3 \][/tex]
[tex]\[ 2x + 2 + n - x > 3 \][/tex]
[tex]\[ x + 2 + n > 3 \][/tex]
[tex]\[ n > 3 - x - 2 \][/tex]
[tex]\[ n > x - 1 \][/tex]
### Inequality 3: \( (x + 3) + n > 2x + 2 \)
[tex]\[ x + 3 + n > 2x + 2 \][/tex]
[tex]\[ n > 2x + 2 - x - 3 \][/tex]
[tex]\[ n > x - 1 \][/tex]
Even though we derived the same inequality for the second part, it reconfirms our previous finding.
Thus, combining both inequalities from above, we get:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
This means that \( n \) must be greater than \( x - 1 \) and less than \( 3x + 5 \) to satisfy all three conditions of the triangle inequality.
The correct solution is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{x - 1 < n < 3x + 5} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.