Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the valid expression for the possible values of \( n \) for the sides of a triangle, we can use the triangle inequality theorem. The triangle inequality theorem states that for any triangle with side lengths \(a\), \(b\), and \(c\):
1. \( a + b > c \)
2. \( a + c > b \)
3. \( b + c > a \)
In this problem, the sides of the triangle are given as:
[tex]\[ a = 2x + 2, \quad b = x + 3, \quad \text{and} \quad c = n \][/tex]
Applying the triangle inequality theorem, we get the following three inequalities:
1. \( (2x + 2) + (x + 3) > n \)
2. \( (2x + 2) + n > x + 3 \)
3. \( (x + 3) + n > 2x + 2 \)
We will solve each inequality step-by-step:
### Inequality 1: \( (2x + 2) + (x + 3) > n \)
[tex]\[ 2x + 2 + x + 3 > n \][/tex]
[tex]\[ 3x + 5 > n \][/tex]
or equivalently,
[tex]\[ n < 3x + 5 \][/tex]
### Inequality 2: \( (2x + 2) + n > x + 3 \)
[tex]\[ 2x + 2 + n > x + 3 \][/tex]
[tex]\[ 2x + 2 + n - x > 3 \][/tex]
[tex]\[ x + 2 + n > 3 \][/tex]
[tex]\[ n > 3 - x - 2 \][/tex]
[tex]\[ n > x - 1 \][/tex]
### Inequality 3: \( (x + 3) + n > 2x + 2 \)
[tex]\[ x + 3 + n > 2x + 2 \][/tex]
[tex]\[ n > 2x + 2 - x - 3 \][/tex]
[tex]\[ n > x - 1 \][/tex]
Even though we derived the same inequality for the second part, it reconfirms our previous finding.
Thus, combining both inequalities from above, we get:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
This means that \( n \) must be greater than \( x - 1 \) and less than \( 3x + 5 \) to satisfy all three conditions of the triangle inequality.
The correct solution is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{x - 1 < n < 3x + 5} \][/tex]
1. \( a + b > c \)
2. \( a + c > b \)
3. \( b + c > a \)
In this problem, the sides of the triangle are given as:
[tex]\[ a = 2x + 2, \quad b = x + 3, \quad \text{and} \quad c = n \][/tex]
Applying the triangle inequality theorem, we get the following three inequalities:
1. \( (2x + 2) + (x + 3) > n \)
2. \( (2x + 2) + n > x + 3 \)
3. \( (x + 3) + n > 2x + 2 \)
We will solve each inequality step-by-step:
### Inequality 1: \( (2x + 2) + (x + 3) > n \)
[tex]\[ 2x + 2 + x + 3 > n \][/tex]
[tex]\[ 3x + 5 > n \][/tex]
or equivalently,
[tex]\[ n < 3x + 5 \][/tex]
### Inequality 2: \( (2x + 2) + n > x + 3 \)
[tex]\[ 2x + 2 + n > x + 3 \][/tex]
[tex]\[ 2x + 2 + n - x > 3 \][/tex]
[tex]\[ x + 2 + n > 3 \][/tex]
[tex]\[ n > 3 - x - 2 \][/tex]
[tex]\[ n > x - 1 \][/tex]
### Inequality 3: \( (x + 3) + n > 2x + 2 \)
[tex]\[ x + 3 + n > 2x + 2 \][/tex]
[tex]\[ n > 2x + 2 - x - 3 \][/tex]
[tex]\[ n > x - 1 \][/tex]
Even though we derived the same inequality for the second part, it reconfirms our previous finding.
Thus, combining both inequalities from above, we get:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
This means that \( n \) must be greater than \( x - 1 \) and less than \( 3x + 5 \) to satisfy all three conditions of the triangle inequality.
The correct solution is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{x - 1 < n < 3x + 5} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.