Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the valid expression for the possible values of \( n \) for the sides of a triangle, we can use the triangle inequality theorem. The triangle inequality theorem states that for any triangle with side lengths \(a\), \(b\), and \(c\):
1. \( a + b > c \)
2. \( a + c > b \)
3. \( b + c > a \)
In this problem, the sides of the triangle are given as:
[tex]\[ a = 2x + 2, \quad b = x + 3, \quad \text{and} \quad c = n \][/tex]
Applying the triangle inequality theorem, we get the following three inequalities:
1. \( (2x + 2) + (x + 3) > n \)
2. \( (2x + 2) + n > x + 3 \)
3. \( (x + 3) + n > 2x + 2 \)
We will solve each inequality step-by-step:
### Inequality 1: \( (2x + 2) + (x + 3) > n \)
[tex]\[ 2x + 2 + x + 3 > n \][/tex]
[tex]\[ 3x + 5 > n \][/tex]
or equivalently,
[tex]\[ n < 3x + 5 \][/tex]
### Inequality 2: \( (2x + 2) + n > x + 3 \)
[tex]\[ 2x + 2 + n > x + 3 \][/tex]
[tex]\[ 2x + 2 + n - x > 3 \][/tex]
[tex]\[ x + 2 + n > 3 \][/tex]
[tex]\[ n > 3 - x - 2 \][/tex]
[tex]\[ n > x - 1 \][/tex]
### Inequality 3: \( (x + 3) + n > 2x + 2 \)
[tex]\[ x + 3 + n > 2x + 2 \][/tex]
[tex]\[ n > 2x + 2 - x - 3 \][/tex]
[tex]\[ n > x - 1 \][/tex]
Even though we derived the same inequality for the second part, it reconfirms our previous finding.
Thus, combining both inequalities from above, we get:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
This means that \( n \) must be greater than \( x - 1 \) and less than \( 3x + 5 \) to satisfy all three conditions of the triangle inequality.
The correct solution is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{x - 1 < n < 3x + 5} \][/tex]
1. \( a + b > c \)
2. \( a + c > b \)
3. \( b + c > a \)
In this problem, the sides of the triangle are given as:
[tex]\[ a = 2x + 2, \quad b = x + 3, \quad \text{and} \quad c = n \][/tex]
Applying the triangle inequality theorem, we get the following three inequalities:
1. \( (2x + 2) + (x + 3) > n \)
2. \( (2x + 2) + n > x + 3 \)
3. \( (x + 3) + n > 2x + 2 \)
We will solve each inequality step-by-step:
### Inequality 1: \( (2x + 2) + (x + 3) > n \)
[tex]\[ 2x + 2 + x + 3 > n \][/tex]
[tex]\[ 3x + 5 > n \][/tex]
or equivalently,
[tex]\[ n < 3x + 5 \][/tex]
### Inequality 2: \( (2x + 2) + n > x + 3 \)
[tex]\[ 2x + 2 + n > x + 3 \][/tex]
[tex]\[ 2x + 2 + n - x > 3 \][/tex]
[tex]\[ x + 2 + n > 3 \][/tex]
[tex]\[ n > 3 - x - 2 \][/tex]
[tex]\[ n > x - 1 \][/tex]
### Inequality 3: \( (x + 3) + n > 2x + 2 \)
[tex]\[ x + 3 + n > 2x + 2 \][/tex]
[tex]\[ n > 2x + 2 - x - 3 \][/tex]
[tex]\[ n > x - 1 \][/tex]
Even though we derived the same inequality for the second part, it reconfirms our previous finding.
Thus, combining both inequalities from above, we get:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
This means that \( n \) must be greater than \( x - 1 \) and less than \( 3x + 5 \) to satisfy all three conditions of the triangle inequality.
The correct solution is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{x - 1 < n < 3x + 5} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.