Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the end behavior of the polynomial function \( f(x) = 2x^3 - 26x - 24 \), we need to focus on the term with the highest degree, which dominates the behavior of the function as \( x \) approaches very large positive and negative values.
For the polynomial \( f(x) = 2x^3 - 26x - 24 \):
1. Identify the leading term:
The leading term of the polynomial is \( 2x^3 \).
2. Analyze what happens as \( x \) approaches \( -\infty \) (negative infinity):
- For large negative values of \( x \), the cubic term \( 2x^3 \) will dominate.
- When \( x \) is a large negative number, \( x^3 \) will be negative (since an odd degree of a negative number is negative).
- Therefore, \( 2x^3 \) will be a large negative number.
- Thus, as \( x \rightarrow -\infty \), \( 2x^3 \rightarrow -\infty \).
3. Analyze what happens as \( x \) approaches \( \infty \) (positive infinity):
- For large positive values of \( x \), the cubic term \( 2x^3 \) will once again dominate.
- When \( x \) is a large positive number, \( x^3 \) will be positive.
- Therefore, \( 2x^3 \) will be a large positive number.
- Thus, as \( x \rightarrow \infty \), \( 2x^3 \rightarrow \infty \).
Given this analysis, the end behavior of the polynomial function \( f(x) \) is:
- As \( x \rightarrow -\infty \), \( y \rightarrow -\infty \).
- As \( x \rightarrow \infty \), \( y \rightarrow \infty \).
Hence, the correct answer is:
As [tex]\( x \rightarrow -\infty, y \rightarrow -\infty \)[/tex] and as [tex]\( x \rightarrow \infty, y \rightarrow \infty \)[/tex].
For the polynomial \( f(x) = 2x^3 - 26x - 24 \):
1. Identify the leading term:
The leading term of the polynomial is \( 2x^3 \).
2. Analyze what happens as \( x \) approaches \( -\infty \) (negative infinity):
- For large negative values of \( x \), the cubic term \( 2x^3 \) will dominate.
- When \( x \) is a large negative number, \( x^3 \) will be negative (since an odd degree of a negative number is negative).
- Therefore, \( 2x^3 \) will be a large negative number.
- Thus, as \( x \rightarrow -\infty \), \( 2x^3 \rightarrow -\infty \).
3. Analyze what happens as \( x \) approaches \( \infty \) (positive infinity):
- For large positive values of \( x \), the cubic term \( 2x^3 \) will once again dominate.
- When \( x \) is a large positive number, \( x^3 \) will be positive.
- Therefore, \( 2x^3 \) will be a large positive number.
- Thus, as \( x \rightarrow \infty \), \( 2x^3 \rightarrow \infty \).
Given this analysis, the end behavior of the polynomial function \( f(x) \) is:
- As \( x \rightarrow -\infty \), \( y \rightarrow -\infty \).
- As \( x \rightarrow \infty \), \( y \rightarrow \infty \).
Hence, the correct answer is:
As [tex]\( x \rightarrow -\infty, y \rightarrow -\infty \)[/tex] and as [tex]\( x \rightarrow \infty, y \rightarrow \infty \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.