Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the end behavior of the polynomial function \( f(x) = 2x^3 - 26x - 24 \), we need to focus on the term with the highest degree, which dominates the behavior of the function as \( x \) approaches very large positive and negative values.
For the polynomial \( f(x) = 2x^3 - 26x - 24 \):
1. Identify the leading term:
The leading term of the polynomial is \( 2x^3 \).
2. Analyze what happens as \( x \) approaches \( -\infty \) (negative infinity):
- For large negative values of \( x \), the cubic term \( 2x^3 \) will dominate.
- When \( x \) is a large negative number, \( x^3 \) will be negative (since an odd degree of a negative number is negative).
- Therefore, \( 2x^3 \) will be a large negative number.
- Thus, as \( x \rightarrow -\infty \), \( 2x^3 \rightarrow -\infty \).
3. Analyze what happens as \( x \) approaches \( \infty \) (positive infinity):
- For large positive values of \( x \), the cubic term \( 2x^3 \) will once again dominate.
- When \( x \) is a large positive number, \( x^3 \) will be positive.
- Therefore, \( 2x^3 \) will be a large positive number.
- Thus, as \( x \rightarrow \infty \), \( 2x^3 \rightarrow \infty \).
Given this analysis, the end behavior of the polynomial function \( f(x) \) is:
- As \( x \rightarrow -\infty \), \( y \rightarrow -\infty \).
- As \( x \rightarrow \infty \), \( y \rightarrow \infty \).
Hence, the correct answer is:
As [tex]\( x \rightarrow -\infty, y \rightarrow -\infty \)[/tex] and as [tex]\( x \rightarrow \infty, y \rightarrow \infty \)[/tex].
For the polynomial \( f(x) = 2x^3 - 26x - 24 \):
1. Identify the leading term:
The leading term of the polynomial is \( 2x^3 \).
2. Analyze what happens as \( x \) approaches \( -\infty \) (negative infinity):
- For large negative values of \( x \), the cubic term \( 2x^3 \) will dominate.
- When \( x \) is a large negative number, \( x^3 \) will be negative (since an odd degree of a negative number is negative).
- Therefore, \( 2x^3 \) will be a large negative number.
- Thus, as \( x \rightarrow -\infty \), \( 2x^3 \rightarrow -\infty \).
3. Analyze what happens as \( x \) approaches \( \infty \) (positive infinity):
- For large positive values of \( x \), the cubic term \( 2x^3 \) will once again dominate.
- When \( x \) is a large positive number, \( x^3 \) will be positive.
- Therefore, \( 2x^3 \) will be a large positive number.
- Thus, as \( x \rightarrow \infty \), \( 2x^3 \rightarrow \infty \).
Given this analysis, the end behavior of the polynomial function \( f(x) \) is:
- As \( x \rightarrow -\infty \), \( y \rightarrow -\infty \).
- As \( x \rightarrow \infty \), \( y \rightarrow \infty \).
Hence, the correct answer is:
As [tex]\( x \rightarrow -\infty, y \rightarrow -\infty \)[/tex] and as [tex]\( x \rightarrow \infty, y \rightarrow \infty \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.