Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

What is the end behavior of the graph of the polynomial function [tex]f(x)=2x^3-26x-24[/tex]?

A. As [tex]x \rightarrow -\infty, y \rightarrow -\infty[/tex] and as [tex]x \rightarrow \infty, y \rightarrow -\infty[/tex].

B. As [tex]x \rightarrow -\infty, y \rightarrow -\infty[/tex] and as [tex]x \rightarrow \infty, y \rightarrow \infty[/tex].

C. As [tex]x \rightarrow -\infty, y \rightarrow \infty[/tex] and as [tex]x \rightarrow \infty, y \rightarrow -\infty[/tex].

D. As [tex]x \rightarrow -\infty, y \rightarrow \infty[/tex] and as [tex]x \rightarrow \infty, y \rightarrow \infty[/tex].


Sagot :

To determine the end behavior of the polynomial function \( f(x) = 2x^3 - 26x - 24 \), we need to focus on the term with the highest degree, which dominates the behavior of the function as \( x \) approaches very large positive and negative values.

For the polynomial \( f(x) = 2x^3 - 26x - 24 \):

1. Identify the leading term:
The leading term of the polynomial is \( 2x^3 \).

2. Analyze what happens as \( x \) approaches \( -\infty \) (negative infinity):
- For large negative values of \( x \), the cubic term \( 2x^3 \) will dominate.
- When \( x \) is a large negative number, \( x^3 \) will be negative (since an odd degree of a negative number is negative).
- Therefore, \( 2x^3 \) will be a large negative number.
- Thus, as \( x \rightarrow -\infty \), \( 2x^3 \rightarrow -\infty \).

3. Analyze what happens as \( x \) approaches \( \infty \) (positive infinity):
- For large positive values of \( x \), the cubic term \( 2x^3 \) will once again dominate.
- When \( x \) is a large positive number, \( x^3 \) will be positive.
- Therefore, \( 2x^3 \) will be a large positive number.
- Thus, as \( x \rightarrow \infty \), \( 2x^3 \rightarrow \infty \).

Given this analysis, the end behavior of the polynomial function \( f(x) \) is:
- As \( x \rightarrow -\infty \), \( y \rightarrow -\infty \).
- As \( x \rightarrow \infty \), \( y \rightarrow \infty \).

Hence, the correct answer is:
As [tex]\( x \rightarrow -\infty, y \rightarrow -\infty \)[/tex] and as [tex]\( x \rightarrow \infty, y \rightarrow \infty \)[/tex].