At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the problem of modeling a population that starts at 10,000 organisms and decreases by 7.4% each year using an exponential function, we can proceed step-by-step as follows:
1. Understand the Initial Population and the Decay Rate:
- Initial population (\(P_0\)) = 10,000 organisms
- Decay rate = 7.4%
2. Convert the Decay Rate to Decimal Form:
- Decay rate in decimal form (\(r\)) = \(-7.4\%\) = \(-\frac{7.4}{100}\) = \(-0.074\)
3. Formulate the General Exponential Model:
- The general exponential form is \(P = a b^t\), where
- \(a\) is the initial amount or population.
- \(b\) is the base of the exponential function.
- \(t\) is the time in years.
4. Define the Constants in the Model:
- \(a\) = Initial population = 10,000
- To find \(b\):
- The population decreases by 7.4% each year, meaning it retains \(100\% - 7.4\%\) of the population each year.
- Hence, \(b = 1 - 0.074 = 0.926\)
5. Consolidate the Model:
- By substituting these values into the general form, we get:
- \(P = 10000 \times 0.926^t\)
So, the exponential model for the population after \( t \) years is:
[tex]\[ P = 10000 \times 0.926^t \][/tex]
This completes the formulation of the problem.
1. Understand the Initial Population and the Decay Rate:
- Initial population (\(P_0\)) = 10,000 organisms
- Decay rate = 7.4%
2. Convert the Decay Rate to Decimal Form:
- Decay rate in decimal form (\(r\)) = \(-7.4\%\) = \(-\frac{7.4}{100}\) = \(-0.074\)
3. Formulate the General Exponential Model:
- The general exponential form is \(P = a b^t\), where
- \(a\) is the initial amount or population.
- \(b\) is the base of the exponential function.
- \(t\) is the time in years.
4. Define the Constants in the Model:
- \(a\) = Initial population = 10,000
- To find \(b\):
- The population decreases by 7.4% each year, meaning it retains \(100\% - 7.4\%\) of the population each year.
- Hence, \(b = 1 - 0.074 = 0.926\)
5. Consolidate the Model:
- By substituting these values into the general form, we get:
- \(P = 10000 \times 0.926^t\)
So, the exponential model for the population after \( t \) years is:
[tex]\[ P = 10000 \times 0.926^t \][/tex]
This completes the formulation of the problem.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.