Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem of modeling a population that starts at 10,000 organisms and decreases by 7.4% each year using an exponential function, we can proceed step-by-step as follows:
1. Understand the Initial Population and the Decay Rate:
- Initial population (\(P_0\)) = 10,000 organisms
- Decay rate = 7.4%
2. Convert the Decay Rate to Decimal Form:
- Decay rate in decimal form (\(r\)) = \(-7.4\%\) = \(-\frac{7.4}{100}\) = \(-0.074\)
3. Formulate the General Exponential Model:
- The general exponential form is \(P = a b^t\), where
- \(a\) is the initial amount or population.
- \(b\) is the base of the exponential function.
- \(t\) is the time in years.
4. Define the Constants in the Model:
- \(a\) = Initial population = 10,000
- To find \(b\):
- The population decreases by 7.4% each year, meaning it retains \(100\% - 7.4\%\) of the population each year.
- Hence, \(b = 1 - 0.074 = 0.926\)
5. Consolidate the Model:
- By substituting these values into the general form, we get:
- \(P = 10000 \times 0.926^t\)
So, the exponential model for the population after \( t \) years is:
[tex]\[ P = 10000 \times 0.926^t \][/tex]
This completes the formulation of the problem.
1. Understand the Initial Population and the Decay Rate:
- Initial population (\(P_0\)) = 10,000 organisms
- Decay rate = 7.4%
2. Convert the Decay Rate to Decimal Form:
- Decay rate in decimal form (\(r\)) = \(-7.4\%\) = \(-\frac{7.4}{100}\) = \(-0.074\)
3. Formulate the General Exponential Model:
- The general exponential form is \(P = a b^t\), where
- \(a\) is the initial amount or population.
- \(b\) is the base of the exponential function.
- \(t\) is the time in years.
4. Define the Constants in the Model:
- \(a\) = Initial population = 10,000
- To find \(b\):
- The population decreases by 7.4% each year, meaning it retains \(100\% - 7.4\%\) of the population each year.
- Hence, \(b = 1 - 0.074 = 0.926\)
5. Consolidate the Model:
- By substituting these values into the general form, we get:
- \(P = 10000 \times 0.926^t\)
So, the exponential model for the population after \( t \) years is:
[tex]\[ P = 10000 \times 0.926^t \][/tex]
This completes the formulation of the problem.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.