Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let me guide you through the problem step-by-step:
### Part (a)
We need to find a function that models the population \( P(t) \), where \( t \) is the number of years after 2000.
Given:
- The initial population in the year 2000 (which we consider as \( t = 0 \)) is \( 19400 \).
- The annual growth rate is 5%.
Since the fox population grows exponentially, we can use the formula for exponential growth:
[tex]\[ P(t) = P_0 \times (1 + r)^t \][/tex]
where:
- \( P(t) \) is the population after \( t \) years.
- \( P_0 \) is the initial population.
- \( r \) is the growth rate.
- \( t \) is the time in years after the initial time.
Substituting the given values:
- \( P_0 = 19400 \)
- \( r = 0.05 \)
The function that models the population \( t \) years after 2000 is:
[tex]\[ P(t) = 19400 \times (1 + 0.05)^t \][/tex]
### Part (b)
Now, we need to estimate the fox population in the year 2008.
First, calculate \( t \) for the year 2008:
[tex]\[ t = 2008 - 2000 = 8 \][/tex]
Next, use the function found in part (a):
[tex]\[ P(t) = 19400 \times (1 + 0.05)^t \][/tex]
Substitute \( t = 8 \) into the equation:
[tex]\[ P(8) = 19400 \times (1 + 0.05)^8 \][/tex]
After evaluating the function, we get the population in the year 2008:
[tex]\[ P(8) \approx 28663 \][/tex]
So, the estimated fox population in the year 2008 is approximately:
[tex]\[ \boxed{28663} \][/tex]
### Part (a)
We need to find a function that models the population \( P(t) \), where \( t \) is the number of years after 2000.
Given:
- The initial population in the year 2000 (which we consider as \( t = 0 \)) is \( 19400 \).
- The annual growth rate is 5%.
Since the fox population grows exponentially, we can use the formula for exponential growth:
[tex]\[ P(t) = P_0 \times (1 + r)^t \][/tex]
where:
- \( P(t) \) is the population after \( t \) years.
- \( P_0 \) is the initial population.
- \( r \) is the growth rate.
- \( t \) is the time in years after the initial time.
Substituting the given values:
- \( P_0 = 19400 \)
- \( r = 0.05 \)
The function that models the population \( t \) years after 2000 is:
[tex]\[ P(t) = 19400 \times (1 + 0.05)^t \][/tex]
### Part (b)
Now, we need to estimate the fox population in the year 2008.
First, calculate \( t \) for the year 2008:
[tex]\[ t = 2008 - 2000 = 8 \][/tex]
Next, use the function found in part (a):
[tex]\[ P(t) = 19400 \times (1 + 0.05)^t \][/tex]
Substitute \( t = 8 \) into the equation:
[tex]\[ P(8) = 19400 \times (1 + 0.05)^8 \][/tex]
After evaluating the function, we get the population in the year 2008:
[tex]\[ P(8) \approx 28663 \][/tex]
So, the estimated fox population in the year 2008 is approximately:
[tex]\[ \boxed{28663} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.