Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the equation of a line that passes through the point \((8, 4)\) and is parallel to the line \(y = 4x + 2\), we need to follow these steps:
1. Identify the slope of the given line: The given line \(y = 4x + 2\) is in slope-intercept form \(y = mx + b\), where \(m\) is the slope.
- Here, the slope \(m\) is \(4\).
2. Parallel lines have the same slope: Since we need a line parallel to \(y = 4x + 2\), the slope of our new line will also be \(4\).
3. Use the point-slope form of a line equation: The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Here, \((x_1, y_1)\) is the point through which the line passes. So, \((x_1, y_1) = (8, 4)\), and \(m = 4\).
4. Substitute the values: Substitute the values \((x_1, y_1)\) and \(m\) into the point-slope form:
[tex]\[ y - 4 = 4(x - 8) \][/tex]
5. Simplify the equation: Distribute the slope and simplify:
[tex]\[ y - 4 = 4x - 32 \][/tex]
Add \(4\) to both sides to isolate \(y\):
[tex]\[ y = 4x - 28 \][/tex]
Thus, the equation of the line that passes through the point \((8, 4)\) and is parallel to the line \(y = 4x + 2\) is \(y = 4x - 28\).
Therefore, the correct option is:
[tex]\[ y = 4x - 28 \][/tex]
1. Identify the slope of the given line: The given line \(y = 4x + 2\) is in slope-intercept form \(y = mx + b\), where \(m\) is the slope.
- Here, the slope \(m\) is \(4\).
2. Parallel lines have the same slope: Since we need a line parallel to \(y = 4x + 2\), the slope of our new line will also be \(4\).
3. Use the point-slope form of a line equation: The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Here, \((x_1, y_1)\) is the point through which the line passes. So, \((x_1, y_1) = (8, 4)\), and \(m = 4\).
4. Substitute the values: Substitute the values \((x_1, y_1)\) and \(m\) into the point-slope form:
[tex]\[ y - 4 = 4(x - 8) \][/tex]
5. Simplify the equation: Distribute the slope and simplify:
[tex]\[ y - 4 = 4x - 32 \][/tex]
Add \(4\) to both sides to isolate \(y\):
[tex]\[ y = 4x - 28 \][/tex]
Thus, the equation of the line that passes through the point \((8, 4)\) and is parallel to the line \(y = 4x + 2\) is \(y = 4x - 28\).
Therefore, the correct option is:
[tex]\[ y = 4x - 28 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.