Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the equation of a line that passes through the point \((8, 4)\) and is parallel to the line \(y = 4x + 2\), we need to follow these steps:
1. Identify the slope of the given line: The given line \(y = 4x + 2\) is in slope-intercept form \(y = mx + b\), where \(m\) is the slope.
- Here, the slope \(m\) is \(4\).
2. Parallel lines have the same slope: Since we need a line parallel to \(y = 4x + 2\), the slope of our new line will also be \(4\).
3. Use the point-slope form of a line equation: The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Here, \((x_1, y_1)\) is the point through which the line passes. So, \((x_1, y_1) = (8, 4)\), and \(m = 4\).
4. Substitute the values: Substitute the values \((x_1, y_1)\) and \(m\) into the point-slope form:
[tex]\[ y - 4 = 4(x - 8) \][/tex]
5. Simplify the equation: Distribute the slope and simplify:
[tex]\[ y - 4 = 4x - 32 \][/tex]
Add \(4\) to both sides to isolate \(y\):
[tex]\[ y = 4x - 28 \][/tex]
Thus, the equation of the line that passes through the point \((8, 4)\) and is parallel to the line \(y = 4x + 2\) is \(y = 4x - 28\).
Therefore, the correct option is:
[tex]\[ y = 4x - 28 \][/tex]
1. Identify the slope of the given line: The given line \(y = 4x + 2\) is in slope-intercept form \(y = mx + b\), where \(m\) is the slope.
- Here, the slope \(m\) is \(4\).
2. Parallel lines have the same slope: Since we need a line parallel to \(y = 4x + 2\), the slope of our new line will also be \(4\).
3. Use the point-slope form of a line equation: The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Here, \((x_1, y_1)\) is the point through which the line passes. So, \((x_1, y_1) = (8, 4)\), and \(m = 4\).
4. Substitute the values: Substitute the values \((x_1, y_1)\) and \(m\) into the point-slope form:
[tex]\[ y - 4 = 4(x - 8) \][/tex]
5. Simplify the equation: Distribute the slope and simplify:
[tex]\[ y - 4 = 4x - 32 \][/tex]
Add \(4\) to both sides to isolate \(y\):
[tex]\[ y = 4x - 28 \][/tex]
Thus, the equation of the line that passes through the point \((8, 4)\) and is parallel to the line \(y = 4x + 2\) is \(y = 4x - 28\).
Therefore, the correct option is:
[tex]\[ y = 4x - 28 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.