Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the value of \(\frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy}\) given that \(x + y + z = 0\), we can use algebraic manipulation and properties of symmetric polynomial expressions. Here's the detailed, step-by-step solution:
[tex]\[ \text{Let} \; S = \frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy}. \][/tex]
First, let's manipulate the expression:
[tex]\[ S = \frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy}. \][/tex]
Rewrite each fraction with a common denominator:
[tex]\[ S = \frac{x^3}{xyz} + \frac{y^3}{xyz} + \frac{z^3}{xyz}. \][/tex]
Combine the terms over a common denominator:
[tex]\[ S = \frac{x^3 + y^3 + z^3}{xyz}. \][/tex]
Given that \(x + y + z = 0\), we can use a known algebraic identity for the sum of cubes:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx). \][/tex]
Since \(x + y + z = 0\), the identity simplifies:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = 0. \][/tex]
Therefore, we have:
[tex]\[ x^3 + y^3 + z^3 = 3xyz. \][/tex]
Substituting this result back into our expression for \(S\):
[tex]\[ S = \frac{x^3 + y^3 + z^3}{xyz} = \frac{3xyz}{xyz}. \][/tex]
Simplify the fraction:
[tex]\[ S = 3. \][/tex]
Thus, the value of \(\frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy}\) is:
[tex]\[ \boxed{3}. \][/tex]
[tex]\[ \text{Let} \; S = \frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy}. \][/tex]
First, let's manipulate the expression:
[tex]\[ S = \frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy}. \][/tex]
Rewrite each fraction with a common denominator:
[tex]\[ S = \frac{x^3}{xyz} + \frac{y^3}{xyz} + \frac{z^3}{xyz}. \][/tex]
Combine the terms over a common denominator:
[tex]\[ S = \frac{x^3 + y^3 + z^3}{xyz}. \][/tex]
Given that \(x + y + z = 0\), we can use a known algebraic identity for the sum of cubes:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx). \][/tex]
Since \(x + y + z = 0\), the identity simplifies:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = 0. \][/tex]
Therefore, we have:
[tex]\[ x^3 + y^3 + z^3 = 3xyz. \][/tex]
Substituting this result back into our expression for \(S\):
[tex]\[ S = \frac{x^3 + y^3 + z^3}{xyz} = \frac{3xyz}{xyz}. \][/tex]
Simplify the fraction:
[tex]\[ S = 3. \][/tex]
Thus, the value of \(\frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy}\) is:
[tex]\[ \boxed{3}. \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.