Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's analyze the given problem step-by-step to determine which statement accurately describes the dilation of the triangle.
1. Understanding Dilation and Scale Factor:
- Dilation is a transformation that changes the size of a figure but not its shape.
- A scale factor, \( n \), determines how much the figure is enlarged or reduced.
- If \( n \) is greater than 1 (\( n > 1 \)), the figure is enlarged.
- If \( n \) is between 0 and 1 (\( 0 < n < 1 \)), the figure is reduced.
2. Given Scale Factor:
- The given scale factor is \( n = \frac{1}{3} \).
3. Analyzing the Scale Factor:
- The value of \( n \) is \( \frac{1}{3} \).
- Since \( \frac{1}{3} \) is between 0 and 1 (i.e., \( 0 < \frac{1}{3} < 1 \)), the triangle will be reduced in size.
4. Determining the Correct Statement:
- Considering \( 0 < \frac{1}{3} < 1 \), we can conclude that the dilation results in a reduction of the size of the triangle.
Therefore, the correct statement is:
- "It is a reduction because \( 0 < n < 1 \)."
So, the true statement regarding the dilation is that:
- It is a reduction because [tex]\( 0 < n < 1 \)[/tex].
1. Understanding Dilation and Scale Factor:
- Dilation is a transformation that changes the size of a figure but not its shape.
- A scale factor, \( n \), determines how much the figure is enlarged or reduced.
- If \( n \) is greater than 1 (\( n > 1 \)), the figure is enlarged.
- If \( n \) is between 0 and 1 (\( 0 < n < 1 \)), the figure is reduced.
2. Given Scale Factor:
- The given scale factor is \( n = \frac{1}{3} \).
3. Analyzing the Scale Factor:
- The value of \( n \) is \( \frac{1}{3} \).
- Since \( \frac{1}{3} \) is between 0 and 1 (i.e., \( 0 < \frac{1}{3} < 1 \)), the triangle will be reduced in size.
4. Determining the Correct Statement:
- Considering \( 0 < \frac{1}{3} < 1 \), we can conclude that the dilation results in a reduction of the size of the triangle.
Therefore, the correct statement is:
- "It is a reduction because \( 0 < n < 1 \)."
So, the true statement regarding the dilation is that:
- It is a reduction because [tex]\( 0 < n < 1 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.