Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

3. A quadratic model [tex] y = b_0 + b_1 x + b_2 x^2 [/tex] is proposed to fit the data shown.

[tex]\[
\begin{array}{c|c|c|c|c|c}
\hline
x & 1 & 2 & 3 & 4 & 5 \\
\hline
y & 5 & 20 & 45 & 75 & 110 \\
\hline
\end{array}
\][/tex]

The system of equations that yields the least squares regression coefficients is given by

[tex]\[
\left(\begin{array}{ccc}
n & \sum x & \sum x^2 \\
\sum x & \sum x^2 & \sum x^3 \\
\sum x^2 & \sum x^3 & \sum x^4
\end{array}\right)
\left(\begin{array}{l}
b_0 \\
b_1 \\
b_2
\end{array}\right) =
\left(\begin{array}{c}
\sum y \\
\sum x y \\
\sum x^2 y
\end{array}\right)
\][/tex]

In order to obtain the model, the following data transformation is proposed: [tex] v = x - 3 \quad w = \frac{y - 45}{5} [/tex]

(a) Based on the transformation, obtain the system of equations.


Sagot :

Sure, let's work through the problem step-by-step. We need to fit a quadratic model \( y = b_0 + b_1 x + b_2 x^2 \) to the given data:

[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline \end{array} \][/tex]

Given the data transformation \( v = x - 3 \) and \( w = \frac{y - 45}{5} \), let's first compute the transformed values:

[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline v & -2 & -1 & 0 & 1 & 2 \\ \hline \end{array} \][/tex]

[tex]\[ \begin{array}{c|c|c|c|c|c} \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline w & -8 & -5 & 0 & 6 & 13 \\ \hline \end{array} \][/tex]

Next, we compute the necessary sums for the transformed values \(v\) and \(w\). We need the following sums:

[tex]\[ \sum v, \quad \sum v^2, \quad \sum v^3, \quad \sum v^4, \quad \sum w, \quad \sum vw, \quad \sum v^2 w \][/tex]

From the problem statement and provided results:

1. \( n = 5 \) (number of data points)
2. \( \sum v = 0 \)
3. \( \sum v^2 = 10 \)
4. \( \sum v^3 = 0 \)
5. \( \sum v^4 = 34 \)
6. \( \sum w = 6.0 \)
7. \( \sum vw = 53.0 \)
8. \( \sum v^2 w = 21.0 \)

These values are confirmed as follows:

\begin{align}
\sum v & = -2 + (-1) + 0 + 1 + 2 = 0 \\
\sum v^2 & = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 4 + 1 + 0 + 1 + 4 = 10 \\
\sum v^3 & = (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 = -8 - 1 + 0 + 1 + 8 = 0 \\
\sum v^4 & = (-2)^4 + (-1)^4 + 0^4 + 1^4 + 2^4 = 16 + 1 + 0 + 1 + 16 = 34 \\
\sum w & = -8 + (-5) + 0 + 6 + 13 = 6 \\
\sum vw & = (-2)(-8) + (-1)(-5) + (0)(0) + (1)(6) + (2)(13) = 16 + 5 + 0 + 6 + 26 = 53 \\
\sum v^2 w & = (-2)^2(-8) + (-1)^2(-5) + (0)^2(0) + (1)^2(6) + (2)^2(13) = 4(-8) + 1(-5) + 0 + 1(6) + 4(13) \\
& = -32 - 5 + 0 + 6 + 52 = 21
\end{align
}

Using these sums, we can form the system of equations as follows:

[tex]\[ \begin{pmatrix} n & \sum v & \sum v^2 \\ \sum v & \sum v^2 & \sum v^3 \\ \sum v^2 & \sum v^3 & \sum v^4 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \sum w \\ \sum vw \\ \sum v^2 w \end{pmatrix} \][/tex]

Substituting the computed values gives:

[tex]\[ \begin{pmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 53 \\ 21 \end{pmatrix} \][/tex]

So the system of equations is:

[tex]\[ \begin{aligned} 5b_0 + 0b_1 + 10b_2 &= 6 \\ 0b_0 + 10b_1 + 0b_2 &= 53 \\ 10b_0 + 0b_1 + 34b_2 &= 21 \end{aligned} \][/tex]

This is the system of equations that yields the least squares regression coefficients for the quadratic model after applying the given data transformations.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.