Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To multiply the given polynomials \((4b^2 + b - 7)\) and \((5b^2 + 3b + 6)\), we need to use the distributive property (also known as the FOIL method for binomials) to expand the expression step-by-step.
Given:
[tex]\[ (4b^2 + b - 7)(5b^2 + 3b + 6) \][/tex]
First, distribute each term in the first polynomial by each term in the second polynomial:
1. Multiply \(4b^2\) by each term in the second polynomial:
[tex]\[ 4b^2 \times 5b^2 = 20b^4 \][/tex]
[tex]\[ 4b^2 \times 3b = 12b^3 \][/tex]
[tex]\[ 4b^2 \times 6 = 24b^2 \][/tex]
2. Multiply \(b\) by each term in the second polynomial:
[tex]\[ b \times 5b^2 = 5b^3 \][/tex]
[tex]\[ b \times 3b = 3b^2 \][/tex]
[tex]\[ b \times 6 = 6b \][/tex]
3. Multiply \(-7\) by each term in the second polynomial:
[tex]\[ -7 \times 5b^2 = -35b^2 \][/tex]
[tex]\[ -7 \times 3b = -21b \][/tex]
[tex]\[ -7 \times 6 = -42 \][/tex]
Next, sum all these terms together:
[tex]\[ 20b^4 + 12b^3 + 24b^2 + 5b^3 + 3b^2 + 6b - 35b^2 - 21b - 42 \][/tex]
Now, combine like terms:
1. \(20b^4\) (the \(b^4\) term only has one component).
2. Combine \(b^3\) terms:
[tex]\[ 12b^3 + 5b^3 = 17b^3 \][/tex]
3. Combine \(b^2\) terms:
[tex]\[ 24b^2 + 3b^2 - 35b^2 = -8b^2 \][/tex]
4. Combine \(b\) terms:
[tex]\[ 6b - 21b = -15b \][/tex]
5. The constant term is \(-42\) (no other constants to combine).
Thus, the simplified product of the polynomials is:
[tex]\[ 20b^4 + 17b^3 - 8b^2 - 15b - 42 \][/tex]
So, the answer is:
[tex]\[ \boxed{20} \, b^4 \, \boxed{+17} \, b^3 \, \boxed{-8} \, b^2 \, \boxed{-15} \, b \, \boxed{-42} \][/tex]
Given:
[tex]\[ (4b^2 + b - 7)(5b^2 + 3b + 6) \][/tex]
First, distribute each term in the first polynomial by each term in the second polynomial:
1. Multiply \(4b^2\) by each term in the second polynomial:
[tex]\[ 4b^2 \times 5b^2 = 20b^4 \][/tex]
[tex]\[ 4b^2 \times 3b = 12b^3 \][/tex]
[tex]\[ 4b^2 \times 6 = 24b^2 \][/tex]
2. Multiply \(b\) by each term in the second polynomial:
[tex]\[ b \times 5b^2 = 5b^3 \][/tex]
[tex]\[ b \times 3b = 3b^2 \][/tex]
[tex]\[ b \times 6 = 6b \][/tex]
3. Multiply \(-7\) by each term in the second polynomial:
[tex]\[ -7 \times 5b^2 = -35b^2 \][/tex]
[tex]\[ -7 \times 3b = -21b \][/tex]
[tex]\[ -7 \times 6 = -42 \][/tex]
Next, sum all these terms together:
[tex]\[ 20b^4 + 12b^3 + 24b^2 + 5b^3 + 3b^2 + 6b - 35b^2 - 21b - 42 \][/tex]
Now, combine like terms:
1. \(20b^4\) (the \(b^4\) term only has one component).
2. Combine \(b^3\) terms:
[tex]\[ 12b^3 + 5b^3 = 17b^3 \][/tex]
3. Combine \(b^2\) terms:
[tex]\[ 24b^2 + 3b^2 - 35b^2 = -8b^2 \][/tex]
4. Combine \(b\) terms:
[tex]\[ 6b - 21b = -15b \][/tex]
5. The constant term is \(-42\) (no other constants to combine).
Thus, the simplified product of the polynomials is:
[tex]\[ 20b^4 + 17b^3 - 8b^2 - 15b - 42 \][/tex]
So, the answer is:
[tex]\[ \boxed{20} \, b^4 \, \boxed{+17} \, b^3 \, \boxed{-8} \, b^2 \, \boxed{-15} \, b \, \boxed{-42} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.