Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To multiply the given polynomials \((4b^2 + b - 7)\) and \((5b^2 + 3b + 6)\), we need to use the distributive property (also known as the FOIL method for binomials) to expand the expression step-by-step.
Given:
[tex]\[ (4b^2 + b - 7)(5b^2 + 3b + 6) \][/tex]
First, distribute each term in the first polynomial by each term in the second polynomial:
1. Multiply \(4b^2\) by each term in the second polynomial:
[tex]\[ 4b^2 \times 5b^2 = 20b^4 \][/tex]
[tex]\[ 4b^2 \times 3b = 12b^3 \][/tex]
[tex]\[ 4b^2 \times 6 = 24b^2 \][/tex]
2. Multiply \(b\) by each term in the second polynomial:
[tex]\[ b \times 5b^2 = 5b^3 \][/tex]
[tex]\[ b \times 3b = 3b^2 \][/tex]
[tex]\[ b \times 6 = 6b \][/tex]
3. Multiply \(-7\) by each term in the second polynomial:
[tex]\[ -7 \times 5b^2 = -35b^2 \][/tex]
[tex]\[ -7 \times 3b = -21b \][/tex]
[tex]\[ -7 \times 6 = -42 \][/tex]
Next, sum all these terms together:
[tex]\[ 20b^4 + 12b^3 + 24b^2 + 5b^3 + 3b^2 + 6b - 35b^2 - 21b - 42 \][/tex]
Now, combine like terms:
1. \(20b^4\) (the \(b^4\) term only has one component).
2. Combine \(b^3\) terms:
[tex]\[ 12b^3 + 5b^3 = 17b^3 \][/tex]
3. Combine \(b^2\) terms:
[tex]\[ 24b^2 + 3b^2 - 35b^2 = -8b^2 \][/tex]
4. Combine \(b\) terms:
[tex]\[ 6b - 21b = -15b \][/tex]
5. The constant term is \(-42\) (no other constants to combine).
Thus, the simplified product of the polynomials is:
[tex]\[ 20b^4 + 17b^3 - 8b^2 - 15b - 42 \][/tex]
So, the answer is:
[tex]\[ \boxed{20} \, b^4 \, \boxed{+17} \, b^3 \, \boxed{-8} \, b^2 \, \boxed{-15} \, b \, \boxed{-42} \][/tex]
Given:
[tex]\[ (4b^2 + b - 7)(5b^2 + 3b + 6) \][/tex]
First, distribute each term in the first polynomial by each term in the second polynomial:
1. Multiply \(4b^2\) by each term in the second polynomial:
[tex]\[ 4b^2 \times 5b^2 = 20b^4 \][/tex]
[tex]\[ 4b^2 \times 3b = 12b^3 \][/tex]
[tex]\[ 4b^2 \times 6 = 24b^2 \][/tex]
2. Multiply \(b\) by each term in the second polynomial:
[tex]\[ b \times 5b^2 = 5b^3 \][/tex]
[tex]\[ b \times 3b = 3b^2 \][/tex]
[tex]\[ b \times 6 = 6b \][/tex]
3. Multiply \(-7\) by each term in the second polynomial:
[tex]\[ -7 \times 5b^2 = -35b^2 \][/tex]
[tex]\[ -7 \times 3b = -21b \][/tex]
[tex]\[ -7 \times 6 = -42 \][/tex]
Next, sum all these terms together:
[tex]\[ 20b^4 + 12b^3 + 24b^2 + 5b^3 + 3b^2 + 6b - 35b^2 - 21b - 42 \][/tex]
Now, combine like terms:
1. \(20b^4\) (the \(b^4\) term only has one component).
2. Combine \(b^3\) terms:
[tex]\[ 12b^3 + 5b^3 = 17b^3 \][/tex]
3. Combine \(b^2\) terms:
[tex]\[ 24b^2 + 3b^2 - 35b^2 = -8b^2 \][/tex]
4. Combine \(b\) terms:
[tex]\[ 6b - 21b = -15b \][/tex]
5. The constant term is \(-42\) (no other constants to combine).
Thus, the simplified product of the polynomials is:
[tex]\[ 20b^4 + 17b^3 - 8b^2 - 15b - 42 \][/tex]
So, the answer is:
[tex]\[ \boxed{20} \, b^4 \, \boxed{+17} \, b^3 \, \boxed{-8} \, b^2 \, \boxed{-15} \, b \, \boxed{-42} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.