Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the normality of the KOH solution, we can use the concept of chemical equivalence and the formula:
[tex]\[ N_1 \times V_1 = N_2 \times V_2 \][/tex]
Here:
- \( N_1 \) and \( V_1 \) are the normality and volume of the neutralizing solution (neutralizer),
- \( N_2 \) and \( V_2 \) are the normality and volume of the KOH solution.
Let's write down the given values:
- The normality of the neutralizer ( \( N_1 \) ) = 0.4 N
- The volume of the neutralizer ( \( V_1 \) ) = 500 ml
- The volume of the KOH solution ( \( V_2 \) ) = 300 ml
First, let's convert the volumes from milliliters to liters:
- The volume of the neutralizer in liters ( \( V_1 \) ) = \( \frac{500}{1000} \) = 0.5 L
- The volume of the KOH solution in liters ( \( V_2 \) ) = \( \frac{300}{1000} \) = 0.3 L
Now we can substitute these values into the formula to find the normality of the KOH solution ( \( N_2 \) ):
[tex]\[ N_1 \times V_1 = N_2 \times V_2 \][/tex]
[tex]\[ 0.4 \times 0.5 = N_2 \times 0.3 \][/tex]
Solving for \( N_2 \):
[tex]\[ 0.2 = N_2 \times 0.3 \][/tex]
[tex]\[ N_2 = \frac{0.2}{0.3} \][/tex]
[tex]\[ N_2 = \frac{2}{3} \][/tex]
[tex]\[ N_2 = 0.6667 \text{ N} \][/tex]
Therefore, the normality of the KOH solution is [tex]\( 0.6667 \text{ N} \)[/tex].
[tex]\[ N_1 \times V_1 = N_2 \times V_2 \][/tex]
Here:
- \( N_1 \) and \( V_1 \) are the normality and volume of the neutralizing solution (neutralizer),
- \( N_2 \) and \( V_2 \) are the normality and volume of the KOH solution.
Let's write down the given values:
- The normality of the neutralizer ( \( N_1 \) ) = 0.4 N
- The volume of the neutralizer ( \( V_1 \) ) = 500 ml
- The volume of the KOH solution ( \( V_2 \) ) = 300 ml
First, let's convert the volumes from milliliters to liters:
- The volume of the neutralizer in liters ( \( V_1 \) ) = \( \frac{500}{1000} \) = 0.5 L
- The volume of the KOH solution in liters ( \( V_2 \) ) = \( \frac{300}{1000} \) = 0.3 L
Now we can substitute these values into the formula to find the normality of the KOH solution ( \( N_2 \) ):
[tex]\[ N_1 \times V_1 = N_2 \times V_2 \][/tex]
[tex]\[ 0.4 \times 0.5 = N_2 \times 0.3 \][/tex]
Solving for \( N_2 \):
[tex]\[ 0.2 = N_2 \times 0.3 \][/tex]
[tex]\[ N_2 = \frac{0.2}{0.3} \][/tex]
[tex]\[ N_2 = \frac{2}{3} \][/tex]
[tex]\[ N_2 = 0.6667 \text{ N} \][/tex]
Therefore, the normality of the KOH solution is [tex]\( 0.6667 \text{ N} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.