Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the normality of the KOH solution, we can use the concept of chemical equivalence and the formula:
[tex]\[ N_1 \times V_1 = N_2 \times V_2 \][/tex]
Here:
- \( N_1 \) and \( V_1 \) are the normality and volume of the neutralizing solution (neutralizer),
- \( N_2 \) and \( V_2 \) are the normality and volume of the KOH solution.
Let's write down the given values:
- The normality of the neutralizer ( \( N_1 \) ) = 0.4 N
- The volume of the neutralizer ( \( V_1 \) ) = 500 ml
- The volume of the KOH solution ( \( V_2 \) ) = 300 ml
First, let's convert the volumes from milliliters to liters:
- The volume of the neutralizer in liters ( \( V_1 \) ) = \( \frac{500}{1000} \) = 0.5 L
- The volume of the KOH solution in liters ( \( V_2 \) ) = \( \frac{300}{1000} \) = 0.3 L
Now we can substitute these values into the formula to find the normality of the KOH solution ( \( N_2 \) ):
[tex]\[ N_1 \times V_1 = N_2 \times V_2 \][/tex]
[tex]\[ 0.4 \times 0.5 = N_2 \times 0.3 \][/tex]
Solving for \( N_2 \):
[tex]\[ 0.2 = N_2 \times 0.3 \][/tex]
[tex]\[ N_2 = \frac{0.2}{0.3} \][/tex]
[tex]\[ N_2 = \frac{2}{3} \][/tex]
[tex]\[ N_2 = 0.6667 \text{ N} \][/tex]
Therefore, the normality of the KOH solution is [tex]\( 0.6667 \text{ N} \)[/tex].
[tex]\[ N_1 \times V_1 = N_2 \times V_2 \][/tex]
Here:
- \( N_1 \) and \( V_1 \) are the normality and volume of the neutralizing solution (neutralizer),
- \( N_2 \) and \( V_2 \) are the normality and volume of the KOH solution.
Let's write down the given values:
- The normality of the neutralizer ( \( N_1 \) ) = 0.4 N
- The volume of the neutralizer ( \( V_1 \) ) = 500 ml
- The volume of the KOH solution ( \( V_2 \) ) = 300 ml
First, let's convert the volumes from milliliters to liters:
- The volume of the neutralizer in liters ( \( V_1 \) ) = \( \frac{500}{1000} \) = 0.5 L
- The volume of the KOH solution in liters ( \( V_2 \) ) = \( \frac{300}{1000} \) = 0.3 L
Now we can substitute these values into the formula to find the normality of the KOH solution ( \( N_2 \) ):
[tex]\[ N_1 \times V_1 = N_2 \times V_2 \][/tex]
[tex]\[ 0.4 \times 0.5 = N_2 \times 0.3 \][/tex]
Solving for \( N_2 \):
[tex]\[ 0.2 = N_2 \times 0.3 \][/tex]
[tex]\[ N_2 = \frac{0.2}{0.3} \][/tex]
[tex]\[ N_2 = \frac{2}{3} \][/tex]
[tex]\[ N_2 = 0.6667 \text{ N} \][/tex]
Therefore, the normality of the KOH solution is [tex]\( 0.6667 \text{ N} \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.