Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Simplify the expression:

[tex]\[ \frac{3^{3x+2} - 3^{3x+1}}{27^x \times 6} \][/tex]


Sagot :

Sure, let's break down the given expression step by step and simplify it:

The expression we need to simplify is:
[tex]\[ \frac{3^{3x+2} - 3^{3x+1}}{27^x \times 6} \][/tex]

Step 1: Rewrite the bases in terms of \(3\).

First, note that \(27\) is a power of \(3\):
[tex]\[ 27 = 3^3 \][/tex]
Therefore, \(27^x\) can be written as \((3^3)^x = 3^{3x}\).

Step 2: Substitute and simplify the denominator.
Replace \(27^x\) with \(3^{3x}\) in the denominator:
[tex]\[ 27^x \times 6 = 3^{3x} \times 6 \][/tex]

Step 3: Simplify the numerator.
The numerator is \(3^{3x+2} - 3^{3x+1}\). We can factor out the common term \(3^{3x+1}\) from both terms in the numerator:
[tex]\[ 3^{3x+2} - 3^{3x+1} = 3^{3x+1}(3 - 1) \][/tex]
Simplify the expression within the parentheses:
[tex]\[ (3-1) = 2 \][/tex]
Thus the numerator simplifies to:
[tex]\[ 3^{3x+1} \times 2 \][/tex]

Step 4: Combine the simplified numerator and denominator.
Rewrite the original expression with the simplified numerator and denominator:
[tex]\[ \frac{3^{3x+1} \times 2}{3^{3x} \times 6} \][/tex]

Step 5: Simplify the fraction.
First, we can cancel the common term \(3^{3x}\) in the numerator and denominator:
[tex]\[ \frac{3^{3x+1} \times 2}{3^{3x} \times 6} = \frac{3 \times 2}{6} \][/tex]
Next, compute the remaining fraction:
[tex]\[ \frac{3 \times 2}{6} = \frac{6}{6} = 1 \][/tex]

Thus, the simplified form of the given expression is:
[tex]\[ \boxed{1} \][/tex]