Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's break down the given expression step by step and simplify it:
The expression we need to simplify is:
[tex]\[ \frac{3^{3x+2} - 3^{3x+1}}{27^x \times 6} \][/tex]
Step 1: Rewrite the bases in terms of \(3\).
First, note that \(27\) is a power of \(3\):
[tex]\[ 27 = 3^3 \][/tex]
Therefore, \(27^x\) can be written as \((3^3)^x = 3^{3x}\).
Step 2: Substitute and simplify the denominator.
Replace \(27^x\) with \(3^{3x}\) in the denominator:
[tex]\[ 27^x \times 6 = 3^{3x} \times 6 \][/tex]
Step 3: Simplify the numerator.
The numerator is \(3^{3x+2} - 3^{3x+1}\). We can factor out the common term \(3^{3x+1}\) from both terms in the numerator:
[tex]\[ 3^{3x+2} - 3^{3x+1} = 3^{3x+1}(3 - 1) \][/tex]
Simplify the expression within the parentheses:
[tex]\[ (3-1) = 2 \][/tex]
Thus the numerator simplifies to:
[tex]\[ 3^{3x+1} \times 2 \][/tex]
Step 4: Combine the simplified numerator and denominator.
Rewrite the original expression with the simplified numerator and denominator:
[tex]\[ \frac{3^{3x+1} \times 2}{3^{3x} \times 6} \][/tex]
Step 5: Simplify the fraction.
First, we can cancel the common term \(3^{3x}\) in the numerator and denominator:
[tex]\[ \frac{3^{3x+1} \times 2}{3^{3x} \times 6} = \frac{3 \times 2}{6} \][/tex]
Next, compute the remaining fraction:
[tex]\[ \frac{3 \times 2}{6} = \frac{6}{6} = 1 \][/tex]
Thus, the simplified form of the given expression is:
[tex]\[ \boxed{1} \][/tex]
The expression we need to simplify is:
[tex]\[ \frac{3^{3x+2} - 3^{3x+1}}{27^x \times 6} \][/tex]
Step 1: Rewrite the bases in terms of \(3\).
First, note that \(27\) is a power of \(3\):
[tex]\[ 27 = 3^3 \][/tex]
Therefore, \(27^x\) can be written as \((3^3)^x = 3^{3x}\).
Step 2: Substitute and simplify the denominator.
Replace \(27^x\) with \(3^{3x}\) in the denominator:
[tex]\[ 27^x \times 6 = 3^{3x} \times 6 \][/tex]
Step 3: Simplify the numerator.
The numerator is \(3^{3x+2} - 3^{3x+1}\). We can factor out the common term \(3^{3x+1}\) from both terms in the numerator:
[tex]\[ 3^{3x+2} - 3^{3x+1} = 3^{3x+1}(3 - 1) \][/tex]
Simplify the expression within the parentheses:
[tex]\[ (3-1) = 2 \][/tex]
Thus the numerator simplifies to:
[tex]\[ 3^{3x+1} \times 2 \][/tex]
Step 4: Combine the simplified numerator and denominator.
Rewrite the original expression with the simplified numerator and denominator:
[tex]\[ \frac{3^{3x+1} \times 2}{3^{3x} \times 6} \][/tex]
Step 5: Simplify the fraction.
First, we can cancel the common term \(3^{3x}\) in the numerator and denominator:
[tex]\[ \frac{3^{3x+1} \times 2}{3^{3x} \times 6} = \frac{3 \times 2}{6} \][/tex]
Next, compute the remaining fraction:
[tex]\[ \frac{3 \times 2}{6} = \frac{6}{6} = 1 \][/tex]
Thus, the simplified form of the given expression is:
[tex]\[ \boxed{1} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.