Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the inverse of the function \(f(c) = \frac{9}{5} c + 32\), which converts degrees Celsius to degrees Fahrenheit, we will follow these steps:
1. Start with the given function:
[tex]\[ f(c) = \frac{9}{5} c + 32 \][/tex]
2. To find the inverse, we need to express \(c\) in terms of \(f\).
3. Set \(f(c)\) equal to \(y\):
[tex]\[ y = \frac{9}{5} c + 32 \][/tex]
4. Solve for \(c\) in terms of \(y\):
Start by isolating the term with \(c\):
[tex]\[ y - 32 = \frac{9}{5} c \][/tex]
Now, to solve for \(c\), multiply both sides of the equation by the reciprocal of \(\frac{9}{5}\), which is \(\frac{5}{9}\):
[tex]\[ c = \frac{5}{9} (y - 32) \][/tex]
5. Replace \(y\) with \(f\) to denote the inverse function:
[tex]\[ c(f) = \frac{5}{9} (f - 32) \][/tex]
After these steps, we find that the inverse function to convert from degrees Fahrenheit back to degrees Celsius is:
[tex]\[ c(f) = \frac{5}{9} (f - 32) \][/tex]
Given the options:
- A. \(c(f) = \frac{9}{5} (f + 32)\)
- B. \(c(f) = \frac{5}{9} (f - 32)\)
- C. \(c(f) = \frac{9}{5} (f - 32)\)
- D. \(c(f) = \frac{5}{9} (f + 32)\)
The correct answer is:
[tex]\[ \boxed{\text{B}} \][/tex]
1. Start with the given function:
[tex]\[ f(c) = \frac{9}{5} c + 32 \][/tex]
2. To find the inverse, we need to express \(c\) in terms of \(f\).
3. Set \(f(c)\) equal to \(y\):
[tex]\[ y = \frac{9}{5} c + 32 \][/tex]
4. Solve for \(c\) in terms of \(y\):
Start by isolating the term with \(c\):
[tex]\[ y - 32 = \frac{9}{5} c \][/tex]
Now, to solve for \(c\), multiply both sides of the equation by the reciprocal of \(\frac{9}{5}\), which is \(\frac{5}{9}\):
[tex]\[ c = \frac{5}{9} (y - 32) \][/tex]
5. Replace \(y\) with \(f\) to denote the inverse function:
[tex]\[ c(f) = \frac{5}{9} (f - 32) \][/tex]
After these steps, we find that the inverse function to convert from degrees Fahrenheit back to degrees Celsius is:
[tex]\[ c(f) = \frac{5}{9} (f - 32) \][/tex]
Given the options:
- A. \(c(f) = \frac{9}{5} (f + 32)\)
- B. \(c(f) = \frac{5}{9} (f - 32)\)
- C. \(c(f) = \frac{9}{5} (f - 32)\)
- D. \(c(f) = \frac{5}{9} (f + 32)\)
The correct answer is:
[tex]\[ \boxed{\text{B}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.