Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's approach each part of the question in detail.
### (a) Likelihood functions \( P_{N \mid H_0}(n) \) and \( P_{N \mid H_1}(n) \)
Given that under hypothesis \( H_0 \), \( N \) follows a Poisson distribution with mean \( \lambda_0 = 4 \), and under hypothesis \( H_1 \), \( N \) follows a Poisson distribution with mean \( \lambda_1 = 6 \):
The Poisson probability mass function (PMF) is given by:
[tex]\[ P(N=n) = \frac{\lambda^n e^{-\lambda}}{n!} \][/tex]
For \( H_0 \) with \( \lambda_0 = 4 \):
[tex]\[ P_{N \mid H_0}(n) = \frac{4^n e^{-4}}{n!} \][/tex]
For \( H_1 \) with \( \lambda_1 = 6 \):
[tex]\[ P_{N \mid H_1}(n) = \frac{6^n e^{-6}}{n!} \][/tex]
Given the example value for \( N \), let \( N = 5 \):
[tex]\[ P_{N \mid H_0}(5) = \frac{4^5 e^{-4}}{5!} = 0.1563 \][/tex]
[tex]\[ P_{N \mid H_1}(5) = \frac{6^5 e^{-6}}{5!} = 0.1606 \][/tex]
### (b) Maximum a posteriori probability (MAP) hypothesis test
To design a MAP hypothesis test, we need to compare the posterior probabilities. Bayes' theorem helps us compute these probabilities.
The prior probabilities are:
[tex]\[ P(H_0) = 0.2 \][/tex]
[tex]\[ P(H_1) = 0.8 \][/tex]
The posterior probabilities are:
[tex]\[ \text{posterior}_{H_0} = P_{N \mid H_0}(5) \times P(H_0) \][/tex]
[tex]\[ \text{posterior}_{H_1} = P_{N \mid H_1}(5) \times P(H_1) \][/tex]
Calculating the posterior probabilities:
[tex]\[ \text{posterior}_{H_0} = 0.1563 \times 0.2 = 0.0313 \][/tex]
[tex]\[ \text{posterior}_{H_1} = 0.1606 \times 0.8 = 0.1285 \][/tex]
Comparing the posterior probabilities:
[tex]\[ \text{posterior}_{H_0} = 0.0313 \][/tex]
[tex]\[ \text{posterior}_{H_1} = 0.1285 \][/tex]
Since \( \text{posterior}_{H_1} \) is greater than \( \text{posterior}_{H_0} \), the MAP decision is to choose \( H_1 \).
### (c) Total error probability \( P_{\text{ERR}} \) of the hypothesis test
The total error probability \( P_{\text{ERR}} \) includes both Type I and Type II errors.
- Type I error is the probability of deciding \( H_1 \) when \( H_0 \) is true.
- Type II error is the probability of deciding \( H_0 \) when \( H_1 \) is true.
Given that:
[tex]\[ P_{\text{Type I error}} = P(H_0) \times \left(1 - P_{N \mid H_0}(5)\right) \][/tex]
[tex]\[ P_{\text{Type II error}} = P(H_1) \times \left(1 - P_{N \mid H_1}(5)\right) \][/tex]
Calculating these probabilities:
[tex]\[ P_{\text{Type I error}} = 0.2 \times (1 - 0.1563) = 0.1687 \][/tex]
[tex]\[ P_{\text{Type II error}} = 0.8 \times (1 - 0.1606) = 0.6715 \][/tex]
So, the total error probability:
[tex]\[ P_{\text{ERR}} = P_{\text{Type I error}} + P_{\text{Type II error}} \][/tex]
[tex]\[ P_{\text{ERR}} = 0.1687 + 0.6715 = 0.8402 \][/tex]
### Summary:
(a) \( P_{N \mid H_0}(5) = 0.1563 \) \\
\( P_{N \mid H_1}(5) = 0.1606 \)
(b) MAP decision is to choose \( H_1 \).
(c) The total error probability [tex]\( P_{\text{ERR}} \)[/tex] is 0.8402.
### (a) Likelihood functions \( P_{N \mid H_0}(n) \) and \( P_{N \mid H_1}(n) \)
Given that under hypothesis \( H_0 \), \( N \) follows a Poisson distribution with mean \( \lambda_0 = 4 \), and under hypothesis \( H_1 \), \( N \) follows a Poisson distribution with mean \( \lambda_1 = 6 \):
The Poisson probability mass function (PMF) is given by:
[tex]\[ P(N=n) = \frac{\lambda^n e^{-\lambda}}{n!} \][/tex]
For \( H_0 \) with \( \lambda_0 = 4 \):
[tex]\[ P_{N \mid H_0}(n) = \frac{4^n e^{-4}}{n!} \][/tex]
For \( H_1 \) with \( \lambda_1 = 6 \):
[tex]\[ P_{N \mid H_1}(n) = \frac{6^n e^{-6}}{n!} \][/tex]
Given the example value for \( N \), let \( N = 5 \):
[tex]\[ P_{N \mid H_0}(5) = \frac{4^5 e^{-4}}{5!} = 0.1563 \][/tex]
[tex]\[ P_{N \mid H_1}(5) = \frac{6^5 e^{-6}}{5!} = 0.1606 \][/tex]
### (b) Maximum a posteriori probability (MAP) hypothesis test
To design a MAP hypothesis test, we need to compare the posterior probabilities. Bayes' theorem helps us compute these probabilities.
The prior probabilities are:
[tex]\[ P(H_0) = 0.2 \][/tex]
[tex]\[ P(H_1) = 0.8 \][/tex]
The posterior probabilities are:
[tex]\[ \text{posterior}_{H_0} = P_{N \mid H_0}(5) \times P(H_0) \][/tex]
[tex]\[ \text{posterior}_{H_1} = P_{N \mid H_1}(5) \times P(H_1) \][/tex]
Calculating the posterior probabilities:
[tex]\[ \text{posterior}_{H_0} = 0.1563 \times 0.2 = 0.0313 \][/tex]
[tex]\[ \text{posterior}_{H_1} = 0.1606 \times 0.8 = 0.1285 \][/tex]
Comparing the posterior probabilities:
[tex]\[ \text{posterior}_{H_0} = 0.0313 \][/tex]
[tex]\[ \text{posterior}_{H_1} = 0.1285 \][/tex]
Since \( \text{posterior}_{H_1} \) is greater than \( \text{posterior}_{H_0} \), the MAP decision is to choose \( H_1 \).
### (c) Total error probability \( P_{\text{ERR}} \) of the hypothesis test
The total error probability \( P_{\text{ERR}} \) includes both Type I and Type II errors.
- Type I error is the probability of deciding \( H_1 \) when \( H_0 \) is true.
- Type II error is the probability of deciding \( H_0 \) when \( H_1 \) is true.
Given that:
[tex]\[ P_{\text{Type I error}} = P(H_0) \times \left(1 - P_{N \mid H_0}(5)\right) \][/tex]
[tex]\[ P_{\text{Type II error}} = P(H_1) \times \left(1 - P_{N \mid H_1}(5)\right) \][/tex]
Calculating these probabilities:
[tex]\[ P_{\text{Type I error}} = 0.2 \times (1 - 0.1563) = 0.1687 \][/tex]
[tex]\[ P_{\text{Type II error}} = 0.8 \times (1 - 0.1606) = 0.6715 \][/tex]
So, the total error probability:
[tex]\[ P_{\text{ERR}} = P_{\text{Type I error}} + P_{\text{Type II error}} \][/tex]
[tex]\[ P_{\text{ERR}} = 0.1687 + 0.6715 = 0.8402 \][/tex]
### Summary:
(a) \( P_{N \mid H_0}(5) = 0.1563 \) \\
\( P_{N \mid H_1}(5) = 0.1606 \)
(b) MAP decision is to choose \( H_1 \).
(c) The total error probability [tex]\( P_{\text{ERR}} \)[/tex] is 0.8402.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.