Answered

Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Question 4 (3.0 points)

In a random minute, the number of call attempts [tex]$N$[/tex] at a telephone switch has a Poisson distribution with a mean of either [tex]$\lambda_0=4$[/tex] (hypothesis [tex]$H_0$[/tex], with [tex]$P\left(H_0\right)=0.2$[/tex]) or [tex]$\lambda_1=6$[/tex] (hypothesis [tex]$H_1$[/tex], with [tex]$P\left(H_1\right)=0.8$[/tex]). Based on the observation of [tex]$N$[/tex],

(a) What are [tex]$P_{N \mid H_0}(n)$[/tex] and [tex]$P_{N \mid H_1}(n)$[/tex], the likelihood functions of [tex]$N$[/tex] given [tex]$H_0$[/tex] and [tex]$H_1$[/tex], respectively?

(b) Design a maximum a posteriori probability (MAP) hypothesis test.

(c) Calculate the total error probability [tex]$P_{\text {ERR }}$[/tex] of the hypothesis test.


Sagot :

Let's approach each part of the question in detail.

### (a) Likelihood functions \( P_{N \mid H_0}(n) \) and \( P_{N \mid H_1}(n) \)

Given that under hypothesis \( H_0 \), \( N \) follows a Poisson distribution with mean \( \lambda_0 = 4 \), and under hypothesis \( H_1 \), \( N \) follows a Poisson distribution with mean \( \lambda_1 = 6 \):

The Poisson probability mass function (PMF) is given by:
[tex]\[ P(N=n) = \frac{\lambda^n e^{-\lambda}}{n!} \][/tex]

For \( H_0 \) with \( \lambda_0 = 4 \):
[tex]\[ P_{N \mid H_0}(n) = \frac{4^n e^{-4}}{n!} \][/tex]

For \( H_1 \) with \( \lambda_1 = 6 \):
[tex]\[ P_{N \mid H_1}(n) = \frac{6^n e^{-6}}{n!} \][/tex]

Given the example value for \( N \), let \( N = 5 \):

[tex]\[ P_{N \mid H_0}(5) = \frac{4^5 e^{-4}}{5!} = 0.1563 \][/tex]
[tex]\[ P_{N \mid H_1}(5) = \frac{6^5 e^{-6}}{5!} = 0.1606 \][/tex]

### (b) Maximum a posteriori probability (MAP) hypothesis test

To design a MAP hypothesis test, we need to compare the posterior probabilities. Bayes' theorem helps us compute these probabilities.

The prior probabilities are:
[tex]\[ P(H_0) = 0.2 \][/tex]
[tex]\[ P(H_1) = 0.8 \][/tex]

The posterior probabilities are:
[tex]\[ \text{posterior}_{H_0} = P_{N \mid H_0}(5) \times P(H_0) \][/tex]
[tex]\[ \text{posterior}_{H_1} = P_{N \mid H_1}(5) \times P(H_1) \][/tex]

Calculating the posterior probabilities:
[tex]\[ \text{posterior}_{H_0} = 0.1563 \times 0.2 = 0.0313 \][/tex]
[tex]\[ \text{posterior}_{H_1} = 0.1606 \times 0.8 = 0.1285 \][/tex]

Comparing the posterior probabilities:
[tex]\[ \text{posterior}_{H_0} = 0.0313 \][/tex]
[tex]\[ \text{posterior}_{H_1} = 0.1285 \][/tex]

Since \( \text{posterior}_{H_1} \) is greater than \( \text{posterior}_{H_0} \), the MAP decision is to choose \( H_1 \).

### (c) Total error probability \( P_{\text{ERR}} \) of the hypothesis test

The total error probability \( P_{\text{ERR}} \) includes both Type I and Type II errors.

- Type I error is the probability of deciding \( H_1 \) when \( H_0 \) is true.
- Type II error is the probability of deciding \( H_0 \) when \( H_1 \) is true.

Given that:
[tex]\[ P_{\text{Type I error}} = P(H_0) \times \left(1 - P_{N \mid H_0}(5)\right) \][/tex]
[tex]\[ P_{\text{Type II error}} = P(H_1) \times \left(1 - P_{N \mid H_1}(5)\right) \][/tex]

Calculating these probabilities:
[tex]\[ P_{\text{Type I error}} = 0.2 \times (1 - 0.1563) = 0.1687 \][/tex]
[tex]\[ P_{\text{Type II error}} = 0.8 \times (1 - 0.1606) = 0.6715 \][/tex]

So, the total error probability:
[tex]\[ P_{\text{ERR}} = P_{\text{Type I error}} + P_{\text{Type II error}} \][/tex]
[tex]\[ P_{\text{ERR}} = 0.1687 + 0.6715 = 0.8402 \][/tex]

### Summary:
(a) \( P_{N \mid H_0}(5) = 0.1563 \) \\
\( P_{N \mid H_1}(5) = 0.1606 \)

(b) MAP decision is to choose \( H_1 \).

(c) The total error probability [tex]\( P_{\text{ERR}} \)[/tex] is 0.8402.