At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's approach each part of the question in detail.
### (a) Likelihood functions \( P_{N \mid H_0}(n) \) and \( P_{N \mid H_1}(n) \)
Given that under hypothesis \( H_0 \), \( N \) follows a Poisson distribution with mean \( \lambda_0 = 4 \), and under hypothesis \( H_1 \), \( N \) follows a Poisson distribution with mean \( \lambda_1 = 6 \):
The Poisson probability mass function (PMF) is given by:
[tex]\[ P(N=n) = \frac{\lambda^n e^{-\lambda}}{n!} \][/tex]
For \( H_0 \) with \( \lambda_0 = 4 \):
[tex]\[ P_{N \mid H_0}(n) = \frac{4^n e^{-4}}{n!} \][/tex]
For \( H_1 \) with \( \lambda_1 = 6 \):
[tex]\[ P_{N \mid H_1}(n) = \frac{6^n e^{-6}}{n!} \][/tex]
Given the example value for \( N \), let \( N = 5 \):
[tex]\[ P_{N \mid H_0}(5) = \frac{4^5 e^{-4}}{5!} = 0.1563 \][/tex]
[tex]\[ P_{N \mid H_1}(5) = \frac{6^5 e^{-6}}{5!} = 0.1606 \][/tex]
### (b) Maximum a posteriori probability (MAP) hypothesis test
To design a MAP hypothesis test, we need to compare the posterior probabilities. Bayes' theorem helps us compute these probabilities.
The prior probabilities are:
[tex]\[ P(H_0) = 0.2 \][/tex]
[tex]\[ P(H_1) = 0.8 \][/tex]
The posterior probabilities are:
[tex]\[ \text{posterior}_{H_0} = P_{N \mid H_0}(5) \times P(H_0) \][/tex]
[tex]\[ \text{posterior}_{H_1} = P_{N \mid H_1}(5) \times P(H_1) \][/tex]
Calculating the posterior probabilities:
[tex]\[ \text{posterior}_{H_0} = 0.1563 \times 0.2 = 0.0313 \][/tex]
[tex]\[ \text{posterior}_{H_1} = 0.1606 \times 0.8 = 0.1285 \][/tex]
Comparing the posterior probabilities:
[tex]\[ \text{posterior}_{H_0} = 0.0313 \][/tex]
[tex]\[ \text{posterior}_{H_1} = 0.1285 \][/tex]
Since \( \text{posterior}_{H_1} \) is greater than \( \text{posterior}_{H_0} \), the MAP decision is to choose \( H_1 \).
### (c) Total error probability \( P_{\text{ERR}} \) of the hypothesis test
The total error probability \( P_{\text{ERR}} \) includes both Type I and Type II errors.
- Type I error is the probability of deciding \( H_1 \) when \( H_0 \) is true.
- Type II error is the probability of deciding \( H_0 \) when \( H_1 \) is true.
Given that:
[tex]\[ P_{\text{Type I error}} = P(H_0) \times \left(1 - P_{N \mid H_0}(5)\right) \][/tex]
[tex]\[ P_{\text{Type II error}} = P(H_1) \times \left(1 - P_{N \mid H_1}(5)\right) \][/tex]
Calculating these probabilities:
[tex]\[ P_{\text{Type I error}} = 0.2 \times (1 - 0.1563) = 0.1687 \][/tex]
[tex]\[ P_{\text{Type II error}} = 0.8 \times (1 - 0.1606) = 0.6715 \][/tex]
So, the total error probability:
[tex]\[ P_{\text{ERR}} = P_{\text{Type I error}} + P_{\text{Type II error}} \][/tex]
[tex]\[ P_{\text{ERR}} = 0.1687 + 0.6715 = 0.8402 \][/tex]
### Summary:
(a) \( P_{N \mid H_0}(5) = 0.1563 \) \\
\( P_{N \mid H_1}(5) = 0.1606 \)
(b) MAP decision is to choose \( H_1 \).
(c) The total error probability [tex]\( P_{\text{ERR}} \)[/tex] is 0.8402.
### (a) Likelihood functions \( P_{N \mid H_0}(n) \) and \( P_{N \mid H_1}(n) \)
Given that under hypothesis \( H_0 \), \( N \) follows a Poisson distribution with mean \( \lambda_0 = 4 \), and under hypothesis \( H_1 \), \( N \) follows a Poisson distribution with mean \( \lambda_1 = 6 \):
The Poisson probability mass function (PMF) is given by:
[tex]\[ P(N=n) = \frac{\lambda^n e^{-\lambda}}{n!} \][/tex]
For \( H_0 \) with \( \lambda_0 = 4 \):
[tex]\[ P_{N \mid H_0}(n) = \frac{4^n e^{-4}}{n!} \][/tex]
For \( H_1 \) with \( \lambda_1 = 6 \):
[tex]\[ P_{N \mid H_1}(n) = \frac{6^n e^{-6}}{n!} \][/tex]
Given the example value for \( N \), let \( N = 5 \):
[tex]\[ P_{N \mid H_0}(5) = \frac{4^5 e^{-4}}{5!} = 0.1563 \][/tex]
[tex]\[ P_{N \mid H_1}(5) = \frac{6^5 e^{-6}}{5!} = 0.1606 \][/tex]
### (b) Maximum a posteriori probability (MAP) hypothesis test
To design a MAP hypothesis test, we need to compare the posterior probabilities. Bayes' theorem helps us compute these probabilities.
The prior probabilities are:
[tex]\[ P(H_0) = 0.2 \][/tex]
[tex]\[ P(H_1) = 0.8 \][/tex]
The posterior probabilities are:
[tex]\[ \text{posterior}_{H_0} = P_{N \mid H_0}(5) \times P(H_0) \][/tex]
[tex]\[ \text{posterior}_{H_1} = P_{N \mid H_1}(5) \times P(H_1) \][/tex]
Calculating the posterior probabilities:
[tex]\[ \text{posterior}_{H_0} = 0.1563 \times 0.2 = 0.0313 \][/tex]
[tex]\[ \text{posterior}_{H_1} = 0.1606 \times 0.8 = 0.1285 \][/tex]
Comparing the posterior probabilities:
[tex]\[ \text{posterior}_{H_0} = 0.0313 \][/tex]
[tex]\[ \text{posterior}_{H_1} = 0.1285 \][/tex]
Since \( \text{posterior}_{H_1} \) is greater than \( \text{posterior}_{H_0} \), the MAP decision is to choose \( H_1 \).
### (c) Total error probability \( P_{\text{ERR}} \) of the hypothesis test
The total error probability \( P_{\text{ERR}} \) includes both Type I and Type II errors.
- Type I error is the probability of deciding \( H_1 \) when \( H_0 \) is true.
- Type II error is the probability of deciding \( H_0 \) when \( H_1 \) is true.
Given that:
[tex]\[ P_{\text{Type I error}} = P(H_0) \times \left(1 - P_{N \mid H_0}(5)\right) \][/tex]
[tex]\[ P_{\text{Type II error}} = P(H_1) \times \left(1 - P_{N \mid H_1}(5)\right) \][/tex]
Calculating these probabilities:
[tex]\[ P_{\text{Type I error}} = 0.2 \times (1 - 0.1563) = 0.1687 \][/tex]
[tex]\[ P_{\text{Type II error}} = 0.8 \times (1 - 0.1606) = 0.6715 \][/tex]
So, the total error probability:
[tex]\[ P_{\text{ERR}} = P_{\text{Type I error}} + P_{\text{Type II error}} \][/tex]
[tex]\[ P_{\text{ERR}} = 0.1687 + 0.6715 = 0.8402 \][/tex]
### Summary:
(a) \( P_{N \mid H_0}(5) = 0.1563 \) \\
\( P_{N \mid H_1}(5) = 0.1606 \)
(b) MAP decision is to choose \( H_1 \).
(c) The total error probability [tex]\( P_{\text{ERR}} \)[/tex] is 0.8402.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.