Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve each part of the question step-by-step:
(a) \( A \cap (B - C) \)
First, we need to find the difference between sets \( B \) and \( C \):
[tex]\[ B - C = \{ x \mid x \in B \text{ and } x \notin C \} = \{6, 8, 9\} \][/tex]
Now, we find the intersection of \( A \) with \( B - C \):
[tex]\[ A \cap (B - C) = \{ x \mid x \in A \text{ and } x \in (B - C) \} = \{8\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{8\}} \][/tex]
(b) \( A - (B - C) \)
Using the result from part (a) for \( B - C = \{6, 8, 9\} \), we find the difference between sets \( A \) and \( B - C \):
[tex]\[ A - (B - C) = \{ x \mid x \in A \text{ and } x \notin (B - C) \} = \{1, 4, 7\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{1, 4, 7\}} \][/tex]
(d) \( A^c \cap (B^c - C^c) \)
First, we find the complements of \( A \), \( B \), and \( C \) in the universal set \( U \):
[tex]\[ A^c = U - A = \{2, 3, 5, 6, 9\} \][/tex]
[tex]\[ B^c = U - B = \{1, 2, 3, 5, 7\} \][/tex]
[tex]\[ C^c = U - C = \{1, 2, 6, 8, 9\} \][/tex]
Next, we find the difference between \( B^c \) and \( C^c \):
[tex]\[ B^c - C^c = \{ x \mid x \in B^c \text{ and } x \notin C^c \} = \{3, 5\} \][/tex]
Now, we find the intersection of \( A^c \) with \( B^c - C^c \):
[tex]\[ A^c \cap (B^c - C^c) = \{ x \mid x \in A^c \text{ and } x \in (B^c - C^c) \} = \{3, 5\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{3, 5\}} \][/tex]
(e) \( A \cup (B \cap C^c) \)
Using the complement of \( C \) found previously \( C^c = \{1, 2, 6, 8, 9\} \), we find the intersection of \( B \) with \( C^c \):
[tex]\[ B \cap C^c = \{ x \mid x \in B \text{ and } x \in C^c \} = \{6, 8, 9\} \][/tex]
Now, we find the union of \( A \) with \( B \cap C^c \):
[tex]\[ A \cup (B \cap C^c) = \{ x \mid x \in A \text{ or } x \in (B \cap C^c) \} = \{1, 4, 6, 7, 8, 9\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{1, 4, 6, 7, 8, 9\}} \][/tex]
(c) \( A \cup B^c \)
Using the complement of \( B \) found previously \( B^c = \{1, 2, 3, 5, 7\} \), we find the union of \( A \) with \( B^c \):
[tex]\[ A \cup B^c = \{ x \mid x \in A \text{ or } x \in B^c \} = \{1, 2, 3, 4, 5, 7, 8\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{1, 2, 3, 4, 5, 7, 8\}} \][/tex]
(f) \( (A - C) \cup (C - A) \)
First, we find the difference between sets \( A \) and \( C \):
[tex]\[ A - C = \{ x \mid x \in A \text{ and } x \notin C \} = \{1, 8\} \][/tex]
Next, we find the difference between sets \( C \) and \( A \):
[tex]\[ C - A = \{ x \mid x \in C \text{ and } x \notin A \} = \{3, 5\} \][/tex]
Now, we find the union of \( A - C \) and \( C - A \):
[tex]\[ (A - C) \cup (C - A) = \{1, 8\} \cup \{3, 5\} = \{1, 3, 5, 8\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{1, 3, 5, 8\}} \][/tex]
(a) \( A \cap (B - C) \)
First, we need to find the difference between sets \( B \) and \( C \):
[tex]\[ B - C = \{ x \mid x \in B \text{ and } x \notin C \} = \{6, 8, 9\} \][/tex]
Now, we find the intersection of \( A \) with \( B - C \):
[tex]\[ A \cap (B - C) = \{ x \mid x \in A \text{ and } x \in (B - C) \} = \{8\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{8\}} \][/tex]
(b) \( A - (B - C) \)
Using the result from part (a) for \( B - C = \{6, 8, 9\} \), we find the difference between sets \( A \) and \( B - C \):
[tex]\[ A - (B - C) = \{ x \mid x \in A \text{ and } x \notin (B - C) \} = \{1, 4, 7\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{1, 4, 7\}} \][/tex]
(d) \( A^c \cap (B^c - C^c) \)
First, we find the complements of \( A \), \( B \), and \( C \) in the universal set \( U \):
[tex]\[ A^c = U - A = \{2, 3, 5, 6, 9\} \][/tex]
[tex]\[ B^c = U - B = \{1, 2, 3, 5, 7\} \][/tex]
[tex]\[ C^c = U - C = \{1, 2, 6, 8, 9\} \][/tex]
Next, we find the difference between \( B^c \) and \( C^c \):
[tex]\[ B^c - C^c = \{ x \mid x \in B^c \text{ and } x \notin C^c \} = \{3, 5\} \][/tex]
Now, we find the intersection of \( A^c \) with \( B^c - C^c \):
[tex]\[ A^c \cap (B^c - C^c) = \{ x \mid x \in A^c \text{ and } x \in (B^c - C^c) \} = \{3, 5\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{3, 5\}} \][/tex]
(e) \( A \cup (B \cap C^c) \)
Using the complement of \( C \) found previously \( C^c = \{1, 2, 6, 8, 9\} \), we find the intersection of \( B \) with \( C^c \):
[tex]\[ B \cap C^c = \{ x \mid x \in B \text{ and } x \in C^c \} = \{6, 8, 9\} \][/tex]
Now, we find the union of \( A \) with \( B \cap C^c \):
[tex]\[ A \cup (B \cap C^c) = \{ x \mid x \in A \text{ or } x \in (B \cap C^c) \} = \{1, 4, 6, 7, 8, 9\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{1, 4, 6, 7, 8, 9\}} \][/tex]
(c) \( A \cup B^c \)
Using the complement of \( B \) found previously \( B^c = \{1, 2, 3, 5, 7\} \), we find the union of \( A \) with \( B^c \):
[tex]\[ A \cup B^c = \{ x \mid x \in A \text{ or } x \in B^c \} = \{1, 2, 3, 4, 5, 7, 8\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{1, 2, 3, 4, 5, 7, 8\}} \][/tex]
(f) \( (A - C) \cup (C - A) \)
First, we find the difference between sets \( A \) and \( C \):
[tex]\[ A - C = \{ x \mid x \in A \text{ and } x \notin C \} = \{1, 8\} \][/tex]
Next, we find the difference between sets \( C \) and \( A \):
[tex]\[ C - A = \{ x \mid x \in C \text{ and } x \notin A \} = \{3, 5\} \][/tex]
Now, we find the union of \( A - C \) and \( C - A \):
[tex]\[ (A - C) \cup (C - A) = \{1, 8\} \cup \{3, 5\} = \{1, 3, 5, 8\} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\{1, 3, 5, 8\}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.